Skip to main content
Log in

The physiology of an olfactory sensillum of the termite Schedorhinotermes lamanianus: carbon dioxide as a modulator of olfactory sensitivity

  • Original Papers
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

There are three morphological types of wall-pore single-walled sensilla on the antennae of Schedorhinotermes lamanianus workers. Among these, the sensilla of the type SW1 always bear two neurons that are distinguishable by their impulse amplitudes in electrophysiological recordings. Both neurons are odour-sensitive and respond with excitation to an equally narrow and strikingly congruent spectrum of odours. 1-Pentanol, 1-hexanol and 2-hexanol cause maximum excitation in both cells. In addition one cell responds to CO2. Short pulses of CO2 up to 3 s duration inhibit this cell totally. The duration of total inhibition increases with the logarithm of the CO2-concentration between 0.06% and 100%. Pulses of CO2 with concentrations above 0.15% cause an inhibition that lasts longer than the period of stimulation. Prolonged CO2 -stimuli (> 300 s) with a concentration between 0.5% and 5% CO2 initially cause total inhibition. However, after 1 to 5 min, activity reappears and reaches a new constant but dose-dependent frequency. None of the stimulatory odours leads to a response in the cell when applied together with CO2. The sensitivity to odours of this one cell type is “switched off” by CO2, whilst CO2 does not influence the other neuron in the same sensillum. The CO2-concentration, (high in the centres of termite nests, low outside the nests) may give important information about the context in which an individual receives a signal. The described modulation of odoursensitivity by CO2 allows the presentation of two hypothetical mechanisms of context-dependent signal interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abushama FT (1966) Electrophysiological investigations on the antennal olfactory receptors of the dampwood termite Zootermopsis angusticollis. Entomol Exp Appl 9: 343–48

    Google Scholar 

  • Bogner F (1986) CO2-sensitive Rezeptoren der Labialpalpusgrube bei Schmetterlingen. Verh Dt Zool Ges 79: 200–201

    Google Scholar 

  • Bogner F (1989) Antennale CO2-sensitive Rezeptoren bei TsetseFliegen. Verh Dt Zool Ges 82: 272–273

    Google Scholar 

  • Bogner F (1990) Sensory physiological investigation of carbon dioxide receptors in Lepidoptera. J Insect Physiol 36: 951–957

    Google Scholar 

  • Bogner F (1992) Response properties of CO2-sensitive receptors in tsetse flies (Diptera: Glossina palpalis). Physiol Entomol 17: 19–24

    Google Scholar 

  • Bogner F, Boppré M, Ernst KD, Boeckh J (1986) CO2 sensitive receptors on labial palps of Rhodogastria moths (Lepidoptera: Arctiidae): physiology, fine structure and central projection. J Comp Physiol A 158: 741–749

    Google Scholar 

  • Burkhardt JF (1991) Der Einfluß verschiedener CO2-Konzentrationen auf das Verhalten der Ameise Pheidole pallidula. Verh Dt Zool Ges 84: 303–304

    Google Scholar 

  • Camhi JM (1983) Neuroethology. Nerve cells and the natural behavior of animals. Sinauer Associates Inc. Sunderland, Massachusetts

    Google Scholar 

  • Cook SF (1932) The respiratory gas exchange in Termopsis nevadensis. Biol Bull 63: 246–257

    Google Scholar 

  • Davis EE, Bowen MF (1994) Sensory physiological basis for attraction in mosquitoes. J Am Mosquito Control Assoc 10: 316–325

    Google Scholar 

  • Den Otter CJ, Van der Goes van Naters WM (1992) Single cell recordings from tsetse (Glossina m. morsitans) antennae reveal olfactory, mechano- and cold receptors. Physiol Entomol 17: 33–42

    Google Scholar 

  • Dickens JC, Billings RF, Payne TL (1992) Green leaf volatiles interrupt aggregation pheromone response in bark beetles infesting southern pines. Experientia 48: 523–524

    Google Scholar 

  • Diesendorf M (1975) General anaesthetic excitation and inhibition of insect CO2-receptors: an interpretation. In: Denton DA, Coghlan JP (eds) Olfaction and taste V. pp 195–198

  • Floyd MA, Evans DA, Howse PE (1976) Electrophysiological and behavioural studies on naturally occurring repellents to Reticulitermes hucifugus. J Insect Physiol 22: 697–701

    Google Scholar 

  • Grant AJ, O'Connell RJ (1986) Neurophysiological and morphological investigations of pheromone-sensitive sensilla on the antenna of male Trichoplusia ni. J Insect Physiol 32: 503–515

    Google Scholar 

  • Grant AJ, Wigton BE, Aghajanian JG, O'Connell RJ (1995) Electrophysiological responses of receptor neurons in mosquito maxillary palp sensilla to carbon dioxide. J Comp Physiol A 177: 389–396

    Google Scholar 

  • Holscher KH, Gearhart HL, Barker RW (1980) Electrophysiological responses of three tick species to carbon dioxide in the laboratory and field. Ann Entomol Soc Am 73: 288–292

    Google Scholar 

  • Howse PE (1984) Sociochemicals of termites. In: Bell WJ, Cardé RT (eds) Chemical ecology of insects. Chapman and Hall, London pp 475–519

    Google Scholar 

  • Kafka WA (1970) Molekulare Wechselwirkungen bei der Erregung einzelner Riechzellen. Z Vergl Physiol 70: 105–143

    Google Scholar 

  • Kafka WA (1987) Similarity of reaction spectra and odor discrimination: single receptor cell recordings in Antheraea polyphemus (Saturniidae). J Comp Physiol A 161: 867–880

    Google Scholar 

  • Kaib M (1990) Intra- and interspecific chemical signals in the termite Schedorhinotermes lamanianus-production sites, chemistry and behaviour. In: Gribakin FG, Wiese K, Popov AV (eds) Sensory systems and communication in arthropods. Advances in Life Sciences. Birkhäuser, Basel Boston Berlin, pp 26–32

    Google Scholar 

  • Kaib M, Ziesmann J (1992) The labial gland in the termite Schedorhinotermes lamanianus (Isoptera: Rhinotermitidae): Morphology and function during communal food exploitation. Insectes Sociaux 39: 373–384

    Google Scholar 

  • Kaib M, Ziesmann J, Wqlfrum U (1993) Modulation of odoursensitivity by carbon dioxide in a termite sensillum: a possible mechanism for signal interpretation. In: K Wiese et al. (eds) Sensory systems of arthropods. Birkhäuser, Basel, pp 481–488

    Google Scholar 

  • Kellogg FE (1970) Water vapour and carbon dioxide receptors in Aedes aegypti. J Insect Physiol 16: 99–108

    Google Scholar 

  • Lacher V (1964) Elektrophysiologische Untersuchungen an einzelnen Rezeptoren für Geruch, Kohlendioxid, Luftfeuchtigkeit und Temperatur auf den Antennen der Arbeitsbiene und der Drohne (Apis mellifera L.). Z. Vergl Physiol 48: 587–623

    Google Scholar 

  • Masson C, Mustaparta H (1990) Chemical information processing in the olfactory system of insects. Physiol Rev 70: 199–245

    Google Scholar 

  • Noirot C (1969): Glands and secretions. In: Krishna K, Weesner FM (eds) Biology of the termites. Vol. 1. Academic Press, New York London, pp 223–282

    Google Scholar 

  • Paim U, Beckel WE (1963) Seasonal oxygen and carbon dioxide content of decaying wood as a component of the microenvironment of Orthosoma brunneum (Forster) (Coleoptera: Cerambycidae). Canad J Zool 41: 1133–1147

    Google Scholar 

  • Peakin GJ, Josens G (1978) Respiration and energy flow. In: Brian MV (ed) Production ecology of ants and termites (International Biological Programme; 13). Cambridge University Press, Cambridge London New York Melbourne, pp 111–164

    Google Scholar 

  • Ruelle JE (1964) L'architecture du nid de Macrotermes natalensis et son sens fonctionnel. In: Bouillon A (ed) Etudes sur les Termites africains. Masson, Paris, pp 327–363

    Google Scholar 

  • Sass H (1978) Olfactory receptors on the antenna of Periplaneta: response constellations that encode food odors. J Comp Physiol 128: 227–233

    Google Scholar 

  • Schoonhoven LM, Blaney WM, Simmonds MSJ (1992) Sensory coding of feeding deterrents in phytophagous insects. In: Bernays E (ed) Insect-plant interactions 4. CRC Press, Boca Raton Ann Arbor London Tokyo, pp 59–79

    Google Scholar 

  • Seeley TD (1974) Atmospheric carbon dioxide regulation in honeybee (Apis mellifera) colonies. J Insect Physiol 20: 2301–2305

    Google Scholar 

  • Stange G (1992) High resolution measurement of atmospheric carbon dioxide concentration changes by the labial palp organ of the moth Heliothis armigera (Lepidoptera: Noctuidae). J Comp Physiol A 171: 317–324

    Google Scholar 

  • Stange G, Diesendorf M (1973) The response of the honeybee antennal CO2-receptors to N2O and Xe. J Comp Physiol 86: 139–158

    Google Scholar 

  • Stange G, Kaissling KE (1995) The site of action of general anaesthetics in insect olfactory receptor neurons. Chem Senses 20: 421–432

    Google Scholar 

  • Steullet P, Guerin PM (1992): Perception of breath components by the tropical bont tick, Amblyomma variegatum Fabricius (Ixodidae) I. CO2-excited and CO2-inhibited receptors. J Comp Physiol A 170: 665–676

    Google Scholar 

  • Visser JH, Van Straaten S, Maarse H (1979) Isolation and identification of the volatiles in the foliage of potato, Solarium tuberosum, a host plant of the Colorado beetle, Leptinotarsa decemlineata. J Chem Ecol 5: 13–25

    Google Scholar 

  • Wolfrum U, Kaib M (1988) Kastenspezifisches Verhalten der Termite Schedorhinotermes lamanianus und dessen Beziehung zu Unterschieden in Ultrastruktur, Häufigkeit und Topographie antennaler Sensillen. Mitt Dtsch Ges Allg Angew Entomol 6: 86–90

    Google Scholar 

  • Yamana K, Toh Y (1987) Intracellular recording from receptor cells of the temporal organ of the Japanese house centipede, Thereuonema hilgendorfii: receptor potential and conductance changes. J Exp Biol 131: 205–213

    Google Scholar 

  • Yamana K, Toh Y, Tateda H (1986) Electrophysiological studies on the temporal organ of the Japanese house centipede, Thereuonema hilgendorfii. J Exp Biol 126: 297–314

    Google Scholar 

  • Ziesmann J, Kaib M (1991) Spurorientierung der Termite Schedorhinotermes: Einfluß der Pheromonkonzentration auf Lokomotion und Antennenbewegung. Verh Dt Zool Ges 84: 372

    Google Scholar 

  • Ziesmann J, Kaib M, Wolfrum U (1992) CO2-dependent response of an olfactory sensillum in the termite Schedorhinotermes lamanianus. Chem Senses 17: 894

    Google Scholar 

  • Zimmermann PR, Darlington JPEC (1987) Methane and other metabolic gases produced by termites. In: Eder J, Rembold H (eds) Chemistry and biology of social insects. J Peperny, München, p 637

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziesmann, J. The physiology of an olfactory sensillum of the termite Schedorhinotermes lamanianus: carbon dioxide as a modulator of olfactory sensitivity. J Comp Physiol A 179, 123–133 (1996). https://doi.org/10.1007/BF00193440

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00193440

Key words

Navigation