Skip to main content

Anatomy and Functioning of the Insect Chemosensory System

  • Chapter
  • First Online:
Extended Biocontrol

Abstract

Semiochemicals play a major role in insect ecology, as evidenced by the broad distribution of chemosensory structures on the insect body. Substantial progress has been made in the field of insect olfaction and taste in recent years. Soluble carrier proteins, receptors, neurons and circuits have been described in considerable detail, and the mechanisms by which they bind, detect, encode and process chemosensory stimuli are being unravelled. At the periphery, chemosensory neurons situated in dedicated sensilla detect and encode the properties of chemical signals thanks to receptor proteins. Insects have evolved large repertoires of such receptors that are genetically and structurally unrelated to their vertebrate counterparts. They are classified into three major families: odorant receptors (for olfaction), gustatory receptors (for taste), and ionotropic receptors (for both). In fact, all are ionotropic (i.e. functioning both as receptors and ion channels), which enhances the speed of odour detection. The encoded signal is transmitted to brain structures where it is processed and translated into a given behaviour. These behaviours exhibit some plasticity according to age, feeding state, circadian rhythm, mating status, etc. The underlying neural and endocrine mechanisms of this plasticity concern both peripheral detection and central nervous integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altner, H., and L. Prillinger. 1980. Ultrastructure of invertebrate chemo-, thermo-, and hygroreceptors and its functional significance. International Review of Cytology 67: 69–139.

    Article  Google Scholar 

  • Anderson, P., B.S. Hansson, U. Nilsson, Q. Han, M. Sjöholm, N. Skals, and S. Anton. 2007. Increased behavioral and neuronal sensitivity to sex pheromone after brief odor experience in a moth. Chemical Senses 32 (5): 483–491.

    Article  CAS  PubMed  Google Scholar 

  • Barrozo, R.B., D. Jarriault, N. Deisig, C. Gemeno, C. Monsempes, P. Lucas, C. Gadenne, and S. Anton. 2011. Mating-induced differential coding of plant odour and sex pheromone in a male moth. European Journal of Neuroscience 33 (10): 1841–1850.

    Article  PubMed  Google Scholar 

  • Bernays, E.A., and M.R. Weiss. 1996. Induced food preferences in caterpillars: The need to identify mechanisms. Entomoligia Experimentalis et Applicata 78 (1): 1–8.

    Article  Google Scholar 

  • de Fouchier, A., W.B. Walker 3rd, N. Montagné, C. Steiner, M. Binyameen, F. Schlyter, T. Chertemps, A. Maria, M.C. François, C. Monsempes, P. Anderson, B.S. Hansson, M.C. Larsson, and E. Jacquin-Joly. 2017. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nature Communications 8: 15709.

    Article  PubMed  PubMed Central  Google Scholar 

  • del Campo, M.L., and C.I. Miles. 2003. Chemosensory tuning to a host recognition cue in the facultative specialist larvae of the moth Manduca sexta. Journal of Experimental Biology 206 (22): 3979–3990.

    Article  PubMed  Google Scholar 

  • French, A., Agha M. Ali, A. Mitra, A. Yanagawa, M.-J. Sellier, and F. Marion-Poll. 2015. Drosophila bitter taste(s). Frontiers in Integrative Neuroscience 9: 58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gadenne, C., R. Barrozo, and S. Anton. 2016. Plasticity in insect olfaction: To smell or not to smell? Annual Review of Entomology 61: 317–333.

    Article  CAS  PubMed  Google Scholar 

  • Gaudry, Q., E.J. Hong, J. Kain, B.L. de Bivort, and R.I. Wilson. 2013. Asymmetric neurotransmitter release enables rapid odour lateralization in Drosophila. Nature 493 (7432): 424–428.

    Article  CAS  PubMed  Google Scholar 

  • Glendinning, J.I. 2015. Taste processing in insects. In Handbook of Olfaction and Gustation, ed. R.L. Doty, 3rd ed., 927–946. Wiley Blackwell: Hoboken.

    Chapter  Google Scholar 

  • Hallem, E.A., A. Dahanukar, and J.R. Carlson. 2006. Insect odor and taste receptors. Annual Review of Entomology 51: 113–135.

    Article  CAS  PubMed  Google Scholar 

  • Hansson, B.S., T.A. Christensen, and J.G. Hildebrand. 1991. Functionally distinct subdivisions of the macroglomerular complex in the antennal lobe of the male sphinx moth Manduca sexta. Journal of Comparative Neurology 312 (2): 264–278.

    Article  CAS  PubMed  Google Scholar 

  • Keil, T.A. 1999. Morphology and development of the peripheral olfactory organs. In Insect Olfaction, ed. B.S. Hansson, 5–47. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Leal, W.S. 2013. Odorous reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology 58: 373–391.

    Article  CAS  PubMed  Google Scholar 

  • Marella, S., W. Fischler, P. Kong, S. Asgarian, E. Rueckert, and K. Scott. 2006. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49 (2): 285–295.

    Article  CAS  PubMed  Google Scholar 

  • Montagné, N., A. de Fouchier, R.D. Newcomb, and E. Jacquin-Joly. 2015. Advances in the identification and characterization of olfactory receptors in insects. Progress in Molecular Biology and Translational Science 130: 55–80.

    Article  PubMed  Google Scholar 

  • Olsen, S.R., and R.I. Wilson. 2008. Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452 (7190): 956–960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rimal, S., and Y. Lee. 2018. The multidimensional ionotropic receptors of Drosophila melanogaster. Insect Molecular Biology 27 (1): 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, H.M. 2019. Molecular evolution of the major arthropod chemoreceptor gene families. Annual Review of Entomology 64: 227–242.

    Article  CAS  PubMed  Google Scholar 

  • Starostina, E., A. Xu, H. Lin, and C.W. Pikielny. 2009. A Drosophila protein family implicated in pheromone perception is related to Tay-Sachs GM2-activator protein. Journal of Biological Chemistry 284 (1): 585–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbrecht, R.A. 1999. Olfactory receptors. In Atlas of Arthropod Sensory Receptors – Dynamic Morphology in Relation to Function, ed. E. Eguchi and Y. Tominaga, 155–176. Dordrecht: Springer.

    Google Scholar 

  • Stocker, R.F. 1994. The organization of the chemosensory system in Drosophila melanogaster: A review. Cell and Tissue Research 275 (1): 3–26.

    Article  CAS  PubMed  Google Scholar 

  • Su, C.Y., K. Menuz, and J.R. Carlson. 2009. Olfactory perception: Receptors, cells, and circuits. Cell 139 (1): 45–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne, N., C. Chromey, S. Bray, and H. Amrein. 2004. Taste perception and coding in Drosophila. Current Biology 14 (12): 1065–1079.

    Article  CAS  PubMed  Google Scholar 

  • Vickers, N.J., T.A. Christensen, T.C. Baker, and J.G. Hildebrand. 2001. Odour-plume dynamics influence the brain’s olfactory code. Nature 410 (6827): 466–470.

    Article  CAS  PubMed  Google Scholar 

  • Vosshall, L.B., and R.F. Stocker. 2007. Molecular architecture of smell and taste in Drosophila. Annual Review of Neuroscience 30: 505–533.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., A. Singhvi, P. Kong, and K. Scott. 2004. Taste representations in the Drosophila brain. Cell 117 (7): 981–991.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, R.I. 2013. Early olfactory processing in Drosophila: Mechanisms and principles. Annual Review of Neuroscience 36: 217–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zacharuk, R.Y. 1985. Antennae and sensilla. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, ed. G.A. Kerkut and L.I. Gilbert, 1–69. Oxford: Pergamon Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Lucas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lucas, P., Montagné, N., Jacquin-Joly, E. (2022). Anatomy and Functioning of the Insect Chemosensory System. In: Fauvergue, X., et al. Extended Biocontrol. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2150-7_16

Download citation

Publish with us

Policies and ethics