Skip to main content
Log in

New antioxidant with dual functions as a peroxidase and chaperone in Pseudomonas aeruginosa

  • Published:
Molecules and Cells

Abstract

Thiol-based peroxiredoxins (Prxs) are conserved throughout all kingdoms. We have found that a conserved typical 2-Cys Prx-like protein (PaPrx) from Pseudomonas aeruginosa bacteria displays diversity in its structure and apparent molecular weight (MW), and can act alternatively as a peroxidase and molecular chaperone. We have also identified a regulatory factor involved in this structural and functional switching. Exposure of P. aeruginosa to hydrogen peroxide (H2O2) causes PaPrx to convert from a high MW (HMW) complex to a low MW (LMW) form, which triggers a chaperone to peroxidase functional switch. This structural switching is primarily guided by either the thioredoxin (Trx) or glutathione (GSH) systems. Furthermore, comparison of our structural data [native and non-reducing polyacrylamide gel electrophoresis (PAGE) analysis, size exclusion chromatography (SEC) analysis, and electron microscopy (EM) observations] and enzymatic analyses (peroxidase and chaperone assay) revealed that the formation of oligomeric HMW complex structures increased chaperone activity of PaPrx. These results suggest that multimerization of PaPrx complexes promotes chaperone activity, and dissociation of the complexes into LMW species enhances peroxidase activity. Thus, the dual functions of PaPrx are clearly associated with their ability to form distinct protein structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alphey, M.S., Bond, C.S., Tetaud, E., Fairlamb, A.H., and Hunter, W.N. (2000). The structure of reduced tryparedoxin peroxidase reveals a decamer and insight into reactivity of 2 Cysperoxiredoxins. J. Mol. Biol. 300, 903–916.

    Article  CAS  PubMed  Google Scholar 

  • Arrigo, A.P. (1998). Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol. Chem. 379, 19–26.

    CAS  PubMed  Google Scholar 

  • Barford, D. (2004). The role of cysteine residues as redox-sensitive regulatory switches. Curr. Opin. Struct. Biol. 14, 679–686.

    Article  CAS  PubMed  Google Scholar 

  • Burgess, S.A., Walker, M.L., Thirumurugan, K., Trinick, J., and Knight, P.J. (2004). Use of negative stain and single-particle image processing to explore dynamic properties of flexible macromolecules. J. Struct. Biol. 147, 247–258.

    Article  CAS  PubMed  Google Scholar 

  • Chae, H.Z., Robison, K., Poole, L.B., Church, G., Storz, G., and Rhee, S.G. (1994). Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. USA 91, 7017–7021.

    Article  CAS  PubMed  Google Scholar 

  • Chang, T.S., Jeong, W., Choi, S.Y., Yu, S., Kang, S.W., and Rhee, S.G. (2002). Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J. Biol. Chem. 277, 25370–25376.

    Article  CAS  PubMed  Google Scholar 

  • Chauhan, R., and Mande, S.C. (2001). Characterization of the Mycobacterium tuberculosis H37Rv alkyl hydroperoxidase AhpC points to the importance of ionic interactions in oligomerization and activity. Biochem. J. 354, 209–215.

    Article  CAS  PubMed  Google Scholar 

  • Cheong, N.E., Choi, Y.O., Lee, K.O., Kim, W.Y., Jung, B.G., Chi, Y.H., Jeong, J.S., Kim, K., Cho, M.J., and Lee, S.Y. (1999). Molecular cloning, expression, and functional characterization of a 2Cys-peroxiredoxin in Chinese cabbage. Plant Mol. Biol. 40, 825–834.

    Article  CAS  PubMed  Google Scholar 

  • Chuang, M.H., Wu, M.S., Lo, W.L., Lin, J.T., Wong, C.H., and Chiou, S.H. (2006). The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function. Proc. Natl. Acad. Sci. USA 103, 2552–2557.

    Article  CAS  PubMed  Google Scholar 

  • Haley, D., Horwitz, J., and Stewart, P.L. (1998). The small heat shock protein, αB-crystallin, has a variable quaternary structure. J. Mol. Biol. 277, 27–35.

    Article  CAS  PubMed  Google Scholar 

  • Hartl, F.U. (1996). Molecular chaperone in cellular protein folding. Nature 381, 571–580.

    Article  CAS  PubMed  Google Scholar 

  • Hendrick, J.P., and Hartl, F.U. (1993). Molecular chaperone functions of heat shock proteins. Annu. Rev. Biochem. 62, 349–384.

    Article  CAS  PubMed  Google Scholar 

  • Hirotsu, S., Abe, Y., Okada, K., Nagahara, N., Hori, H., Nishino, T., and Hakoshima, T. (1999). Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product. Proc. Natl. Acad. Sci. USA 96, 12333–12338.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann, B., Hecht, H.J., and Flohé, L. (2002). Peroxiredoxins. Biol. Chem. 383(3–4), 347–364.

    Article  CAS  PubMed  Google Scholar 

  • Ito, H., Kamei, K., Iwamoto, I., Inaguma, Y., Nohara, D., and Kato, K. (2001). Phosphorylation-induced change of the oligomerization state of alpha B-crystallin, J. Biol. Chem. 276, 5346–5352.

    Article  CAS  PubMed  Google Scholar 

  • Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J.W., et al. (2004). Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117, 625–635.

    Article  CAS  PubMed  Google Scholar 

  • Jang, H.H., Chi, Y.H., Park, S.K., Lee, S.S., Lee, J.R., Park, J.H., Moon, J.C., Lee, Y.M., Kim, S.Y., Lee, K.H., et al. (2006). Structural and functional regulation of eukaryotic 2-Cys peroxiredoxins including the plant ones in cellular defense signaling mechanisms against oxidative stress. Physiol. Plant. 126, 549–559.

    CAS  Google Scholar 

  • Jeong, W.J., Cha, M.K., and Kim, I.H. (2000). A new member of human Tsa/AhpC as thioredoxin-dependent thiol peroxidase. J. Biochem. Mol. Biol. 33, 234–241.

    CAS  Google Scholar 

  • Kim, K.S., Choi, S.Y., Kwon, H.Y., Won, M.H., Kang, T.C., and Kang, J.H. (2002). Aggregation of α-synuclein induced by the Cu, Zn-superoxide dismutase and hydrogen peroxide system. Free Radic. Biol. Med. 32, 544–550.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.A., Park, S., Kim, K., Rhee, S.G., and Kang, S.W. (2005). Activity assay of mammalian 2-cys peroxiredoxins using yeast thioredoxin reductase system. Anal. Biochem. 338, 216–223.

    Article  CAS  PubMed  Google Scholar 

  • Kitano, K., Niimura, Y., Nishiyama, Y., and Miki, K. (1999). Stimulation of peroxidase activity by decamerization related to ionic strength: ahpC protein from Amphibacillus xylanus. J. Biochem. 126, 313–319.

    CAS  PubMed  Google Scholar 

  • Lee, G.J., Roseman, A.M., Saibil, H.R., and Vierling, E. (1997). A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 16, 659–671.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.R., Lee, S.S., Jang, H.H., Lee, Y.M., Park, J.H., Park, S.-C., Moon, J.C., Park, S.K., Kim, S.Y., Lee, S.Y., et al. (2009). Heatshock dependent oligomeric status alters the function of a plantspecific thioredoxin-like protein, AtTDX. Proc. Natl. Acad. Sci. USA 106, 5978–5983.

    Article  CAS  PubMed  Google Scholar 

  • Moon, J.C., Hah, Y.S., Kim, W.Y., Jung, B.G., Jang, H.H., Lee, J.R., Kim, S.Y., Lee, Y.M., Jeon, M.K., Kim, C.W., et al. (2005). Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death, J. Biol. Chem. 280, 28775–28784.

    Article  CAS  PubMed  Google Scholar 

  • Nooren, I.M.A., and Thornton, J.M. (2003a). Structural characterisation and functional significance of transient protein-protein interactions. J. Mol. Biol. 325, 991–1018.

    Article  CAS  PubMed  Google Scholar 

  • Nooren, I.M.A., and Thornton, J.M. (2003b). Diversity of proteinprotein interactions. EMBO J. 22, 3486–3492.

    Article  CAS  PubMed  Google Scholar 

  • Papp, E., Nardai, G., Söti, C., and Csermely, P. (2003). Molecular chaperones, stress proteins and redox homeostasis. BioFactors 17, 249–257.

    Article  CAS  PubMed  Google Scholar 

  • Park, S.G., Cha, M.K., Jeong, W., and Kim, I.H. (2000). Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275, 5723–5732.

    Article  CAS  PubMed  Google Scholar 

  • Schröder, E., Littlechild, J.A., Lebedev, A.A., Errington, N., Vagin, A.A., and Isupov, M.N. (2000). Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 Å resolution. Structure 8, 605–615.

    Article  PubMed  Google Scholar 

  • Wood, Z.A., Schroder, E., Robin, H.J., and Poole, L.B. (2003). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Yeoup Chung.

About this article

Cite this article

An, B.C., Lee, S.S., Lee, E.M. et al. New antioxidant with dual functions as a peroxidase and chaperone in Pseudomonas aeruginosa . Mol Cells 29, 145–151 (2010). https://doi.org/10.1007/s10059-010-0023-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-010-0023-1

Keywords

Navigation