Skip to main content
Log in

Involvement of Ca2+/calmodulin kinase II (CaMK II) in genistein-induced potentiation of leucine/glutamine-stimulated insulin secretion

  • Published:
Molecules and Cells

Abstract

Genistein has been reported to potentiate glucose-stimulated insulin secretion (GSIS). Inhibitory activity on tyrosine kinase or activation of protein kinase A (PKA) was shown to play a role in the genistein-induced potentiation effect on GSIS. The aim of the present study was to elucidate the mechanism of genistein-induced potentiation of insulin secretion. Genistein augmented insulin secretion in INS-1 cells stimulated by various energy-generating nutrients such as glucose, pyruvate, or leucine/glutamine (Leu/Gln), but not the secretion stimulated by depolarizing agents such as KCl and tolbutamide, or Ca2+ channel opener Bay K8644. Genistein at a concentration of 50 μM showed a maximum potentiation effect on Leu/Gln-stimulated insulin secretion, but this was not sufficient to inhibit the activity of tyrosine kinase. Inhibitor studies as well as immunoblotting analysis demonstrated that activation of PKA was little involved in genistein-induced potentiation of Leu/Gln-stimulated insulin secretion. On the other hand, all the inhibitors of Ca2+/calmodulin kinase II tested, significantly diminished genistein-induced potentiation. Genistein also elevated the levels of [Ca2+]i and phospho-CaMK II. Furthermore, genistein augmented Leu/Gln-stimulated insulin secretion in CaMK II-overexpressing INS-1 cells. These data suggest that the activation of CaMK II played a role in genistein-induced potentiation of insulin secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama, T., Ishida, J., and Nakagawa, S. (1987). Genistein, a specific inhibitor of tyrosine-specific protein kinase. J. Biol. Chem. 262, 5592–5595.

    PubMed  CAS  Google Scholar 

  • Borge, P.D., Moibi, J., Greene, S.R., Trucco, M., Young, R.A., Gao, Z., and Wolf, B.A. (2002). Insulin receptor signaling and sarco/endoplasmic reticulum calcium ATPase in beta-cells. Diabetes 51, S427–S433.

    Article  PubMed  CAS  Google Scholar 

  • Bratanova-Tochkova, T.K., Cheng, H,, Daniel, S., Gunawardana, S., Liu, Y.J., Mulvaney-Musa, J., Schermerhorn, T., Straub, S.G., Yajima, H., and Sharp, G.W. (2002). Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion. Diabetes 51, S83–S90.

    Article  PubMed  CAS  Google Scholar 

  • Davies, S.P., Reddy, H., Caivano, M., and Cohen, P. (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105.

    Article  PubMed  CAS  Google Scholar 

  • Eto, K., Yamashita, T., Tsubamoto, Y., Terauchi, Y., Hirose, K., Kubota, N., Yamashita, S., Taka, J., Satoh, S., Sekihara, H., et al. (2002). Phosphatidylinositol 3-kinase suppresses glucose-stimulated insulin secretion by affecting post-cytosolic [Ca(2+)] elevation signals Diabetes 51, 87–97.

    Article  PubMed  CAS  Google Scholar 

  • Henquin, J.C. (2000). Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49, 751–760.

    Article  Google Scholar 

  • Jonas, J.C., Plant, T.D., Gilon, P., Detimary, P., Nenquin, M., and Henquin, J.C. (1995). Multiple effects and stimulation of insulin secretion by the tyrosine kinase inhibitor genistein in normal mouse islets. Br. J. Pharmacol. 114, 872–880.

    PubMed  CAS  Google Scholar 

  • Kang, K., Lee, S.B., Jung, S.H., Cha, K.H., Park, W.D., Sohn, Y.C., and Nho, C.W. (2009). Tectoridin, a poor ligand of estrogen receptor alpha, exerts its estrogenic effects via an ERK-dependent pathway. Mol. Cells 27, 351–357.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen, P., Kofod, H., Lernmark, A., and Hedeskov, C.J. (1983). L-leucine methyl ester stimulates insulin secretion and islet glutamate dehydrogenase. Am. J. Physiol. Endocrinol. Metab. 245, E338–E346.

    CAS  Google Scholar 

  • Linassier, C., Pierre, M., Le Pecq, J.B., and Pierre, J. (1990). Mechanisms of action in NIH-3T3 cells of genistein, an inhibitor of EGF receptor tyrosine kinase activity. Biochem. Pharmacol. 39, 187–193.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y.J., Cheng, H., Drought, H., MacDonald, M.J., Sharp, G.W., and Straub, S.G. (2003). Activation of the KATP channel-independent signaling pathway by the nonhydrolyzable analog of leucine, BCH. Am. J. Physiol. Endocrinol. Metab. 285, E380–E389.

    PubMed  CAS  Google Scholar 

  • Liu, D., Jiang, H., and Grange, R.W. (2005). Genistein activates the 3′,5′-cyclic adenosine monophosphate signaling pathway in vascular endothelial cells and protects endothelial barrier function. Endocrinology 146, 1312–1320.

    Article  PubMed  CAS  Google Scholar 

  • Liu, D., Zhen, W., Yang, Z., Carter, J.D., Si, H., and Reynolds, K.A. (2006). Genistein acutely stimulates insulin secretion in pancreatic beta-cells through a cAMP-dependent protein kinase pathway. Diabetes 55, 1043–1050.

    Article  PubMed  CAS  Google Scholar 

  • Maechler, P. (2002). Mitochondria as the conductor of metabolic signals for insulin exocytosis in pancreatic beta-cells. Cell. Mol. Life Sci. 59, 1803–1818.

    Article  PubMed  CAS  Google Scholar 

  • Markiewicz, L., Garey, J., and Adlercreutz, H. (1993). In vitro bioassays of non-steroidal phytoestrogens. J. Steroi. Biochem. Mol. Biol. 45, 399–405.

    Article  CAS  Google Scholar 

  • Markovits, J., Linassier, C., Fossé, P., Couprie, J., Pierre, J., Jacquemin-Sablon, A., Saucier, J.M., Le Pecq, J.B., and Larsen, A.K. (1989). Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Res. 49, 5111–5117.

    PubMed  CAS  Google Scholar 

  • Nesher, R., Anteby, E., Yedovizky, M., Warwar, N., Kaiser, N., and Cerasi, E. (2002). Beta-cell protein kinases and the dynamics of the insulin response to glucose. Diabetes 51, S68–S73.

    Article  PubMed  CAS  Google Scholar 

  • Ng, W.W., Keung, W., Xu, Y.C., Ng, K.F., Leung, G.P., Vanhoutte, P.M., Choy, P.C., and Man, R.Y. (2008). Genistein potentiates protein kinase A activity in porcine coronary artery. Mol. Cell. Biochem. 311, 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, T., Kato, N., Ishii, C., Shimizu, M., Ito, Y., Tomono, S., and Kawazu, S. (1993). Genistein augments cyclic adenosine 3′5′- monophosphate(cAMP) accumulation and insulin release in MIN6 cells. Endocrine Res. 19, 273–285.

    Article  CAS  Google Scholar 

  • Ohsugi, M., Cras-Méneur, C., Zhou, Y., Bernal-Mizrachi, E., Johnson, J.D., Luciani, D.S., Polonsky, K.S., and Permutt, M.A. (2005). Reduced expression of the insulin receptor in mouse insulinoma (MIN6) cells reveals multiple roles of insulin signaling in gene expression, proliferation, insulin content, and secretion. J. Biol. Chem. 280, 4992–5003.

    Article  PubMed  CAS  Google Scholar 

  • Persaud, S.J., Harris, T.E., Burns, C.J., and Jones, P.M. (1999) Tyrosine kinases play a permissive role in glucose-induced insulin secretion from adult rat islets. J. Mol. Endocrinol. 22, 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Sorenson, R.L., Brelje, T.C., and Roth, C. (1994). Effect of tyrosine kinase inhibitors on islets of langerhans: evidence for tyrosine kinases in the regulation of insulin secretion Endocrinology 134, 1975–1978.

    Article  PubMed  CAS  Google Scholar 

  • Straub, S.G., and Sharp, G.W. (2002). Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab. Res. Rev. 18, 451–463.

    Article  PubMed  CAS  Google Scholar 

  • Verspohl, E.J., Tollkühn, B., and Kloss, H. (1995). Role of tyrosine kinase in insulin release in an insulin secreting cell line (INS-1). Cell Signal. 7, 505–512.

    Article  PubMed  CAS  Google Scholar 

  • Wan, Q.F., Dong, Y., Yang, H., Lou, X., Ding, J., and Xu, T. (2004). Protein kinase activation increases insulin secretion by sensitizing the secretory machinery to Ca2+. J. Gen. Physiol. 124, 653–662.

    Article  PubMed  CAS  Google Scholar 

  • Wiederkehr, A., and Wollheim, C.B. (2006). Minireview: implication of mitochondria in insulin secretion and action. Endocrinology 147, 2643–2649.

    Article  PubMed  CAS  Google Scholar 

  • Zawalich, W.S., and Zawalich, K.C. (2002). Effects of glucose, exogenous insulin, and carbachol on C-peptide and insulin secretion from isolated perifused rat islets. J. Biol. Chem. 277, 26233–26237.

    Article  PubMed  CAS  Google Scholar 

  • Zawalich, W.S., Yamazaki, H., Zawalich, K.C., and Cline, G. (2004). Comparative effects of amino acids and glucose on insulin secretion from isolated rat or mouse islets. J. Endocrinol. 183, 309–319

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yup Kang.

About this article

Cite this article

Lee, SJ., Kim, HE., Choi, SE. et al. Involvement of Ca2+/calmodulin kinase II (CaMK II) in genistein-induced potentiation of leucine/glutamine-stimulated insulin secretion. Mol Cells 28, 167–174 (2009). https://doi.org/10.1007/s10059-009-0119-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0119-7

Keywords

Navigation