Skip to main content

Advertisement

Log in

GNE missense mutation in recessive familial amyotrophic lateral sclerosis

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a motor neuron disease eventually leading to death from respiratory failure. Recessive inheritance is very rare. Here, we describe the clinical findings in a consanguineous family with five men afflicted with recessive ALS and the identification of the homozygous mutation responsible for the disorder. The onset of the disease ranged from 12 to 35 years of age, with variable disease progressions. We performed clinical investigations including metabolic and paraneoplastic screening, cranial and cervical imaging, and electrophysiology. We mapped the disease gene to 9p21.1-p12 with a LOD score of 5.2 via linkage mapping using genotype data for single-nucleotide polymorphism markers and performed exome sequence analysis to identify the disease-causing gene variant. We also Sanger sequenced all coding sequences of SIGMAR1, a gene reported as responsible for juvenile ALS in a family. We did not find any mutation in SIGMAR1. Instead, we identified a novel homozygous missense mutation p.(His705Arg) in GNE which was predicted as damaging by online tools. GNE has been associated with inclusion body myopathy and is expressed in many tissues. We propose that the GNE mutation underlies the pathology in the family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chiò A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, White LA (2013) Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41(2):118–130

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siddique T, Deng HX (1996) Genetics of amyotrophic lateral sclerosis. Hum Mol Genet 5 Spec No:1465–1470

  3. Mulder DW, Kurland LT, Offord KP, Beard CM (1986) Familial adult motor neuron disease: amyotrophic lateral sclerosis. Neurology 36(4):511–517

    Article  CAS  PubMed  Google Scholar 

  4. Chen S, Sayana P, Zhang X, Le W (2013) Genetics of amyotrophic lateral sclerosis: an update. Mol Neurodegener 8:28. https://doi.org/10.1186/1750-1326-8-28

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sreedharan J, Brown RH Jr (2013) Amyotrophic lateral sclerosis: problems and prospects. Ann Neurol 74(3):309–316. https://doi.org/10.1002/ana.24012

    Article  CAS  PubMed  Google Scholar 

  6. Zufiria M, Gil-Bea FJ, Fernandez-Torron R, Poza JJ, Munoz-Blanco JL, Rojas-Garcia R, Riancho J, de Munain AL (2016) ALS: a bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol 142:104–129. https://doi.org/10.1016/j.pneurobio.2016.05.004

    Article  CAS  PubMed  Google Scholar 

  7. Powers JM, Horoupian DS, Schaumburg HH (1974) Wetherbee Ail. Documentation of a neurological disease in a Vermont family 90 years later. Can J Neurol Sci 1(2):139–140

    Article  CAS  PubMed  Google Scholar 

  8. Veltema AN, Roos RA, Bruyn GW (1990) Autosomal dominant adult amyotrophic lateral sclerosis. A six generation Dutch family. J Neurol Sci 97(1):93–115

    Article  CAS  PubMed  Google Scholar 

  9. Hentati A, Ouahchi K, Pericak-Vance MA, Nijhawan D, Ahmad A, Yang Y, Rimmler J, Hung W, Schlotter B, Ahmed A, Ben Hamida M, Hentati F, Siddique T (1998) Linkage of a commoner form of recessive amyotrophic lateral sclerosis to chromosome 15q15-q22 markers. Neurogenetics 2(1):55–60

    Article  CAS  PubMed  Google Scholar 

  10. Chen YZ, Bennett CL, Huynh HM, Blair IP, Puls I, Irobi J, Dierick I, Abel A, Kennerson ML, Rabin BA, Nicholson GA, Auer-Grumbach M, Wagner K, De Jonghe P, Griffin JW, Fischbeck KH, Timmerman V, Cornblath DR, Chance PF (2004) DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 74(6):1128–1135. https://doi.org/10.1086/421054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alter M, Schaumann B (1976) Hereditary amyotrophic lateral sclerosis. A report of two families. Eur Neurol 14(4):250–265

    Article  CAS  PubMed  Google Scholar 

  12. Turner MR, Bakker M, Sham P, Shaw CE, Leigh PN, Al-Chalabi A (2002) Prognostic modelling of therapeutic interventions in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 3(1):15–21. https://doi.org/10.1080/146608202317576499

    Article  CAS  PubMed  Google Scholar 

  13. Sabatelli M, Madia F, Conte A, Luigetti M, Zollino M, Mancuso I, Lo Monaco M, Lippi G, Tonali P (2008) Natural history of young-adult amyotrophic lateral sclerosis. Neurology 71(12):876–881. https://doi.org/10.1212/01.wnl.0000312378.94737.45

    Article  CAS  PubMed  Google Scholar 

  14. Cudkowicz ME, McKenna-Yasek D, Sapp PE, Chin W, Geller B, Hayden DL, Schoenfeld DA, Hosler BA, Horvitz HR, Brown RH (1997) Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis. Ann Neurol 41(2):210–221. https://doi.org/10.1002/ana.410410212

    Article  CAS  PubMed  Google Scholar 

  15. Juneja T, Pericak-Vance MA, Laing NG, Dave S, Siddique T (1997) Prognosis in familial amyotrophic lateral sclerosis: progression and survival in patients with glu100gly and ala4val mutations in Cu, Zn superoxide dismutase. Neurology 48(1):55–57

    Article  CAS  PubMed  Google Scholar 

  16. Luigetti M, Madia F, Conte A, Marangi G, Zollino M, Del Grande A, Dileone M, Tonali PA, Sabatelli M (2009) SOD1 G93D mutation presenting as paucisymptomatic amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10(5–6):479–482. https://doi.org/10.3109/17482960802302261

    Article  CAS  PubMed  Google Scholar 

  17. Orban P, Devon RS, Hayden MR, Leavitt BR (2007) Chapter 15 Juvenile amyotrophic lateral sclerosis. Handb Clin Neurol 82:301–312. https://doi.org/10.1016/S0072-9752(07)80018-2

    Article  PubMed  Google Scholar 

  18. Fecto F, Siddique T (2011) Making connections: pathology and genetics link amyotrophic lateral sclerosis with frontotemporal lobe dementia. J Mol Neurosci 45(3):663–675. https://doi.org/10.1007/s12031-011-9637-9

    Article  PubMed  Google Scholar 

  19. Orlacchio A, Babalini C, Borreca A, Patrono C, Massa R, Basaran S, Munhoz RP, Rogaeva EA, St George-Hyslop PH, Bernardi G, Kawarai T (2010) SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain 133(Pt 2):591–598. https://doi.org/10.1093/brain/awp325

    Article  PubMed  PubMed Central  Google Scholar 

  20. Andersen PM, Nilsson P, Ala-Hurula V, Keränen ML, Tarvainen I, Haltia T, Nilsson L, Binzer M, Forsgren L, Marklund SL (1995) Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase. Nat Genet 10(1):61–66. https://doi.org/10.1038/ng0595-61

    Article  CAS  PubMed  Google Scholar 

  21. Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, Kinoshita Y, Kamada M, Nodera H, Suzuki H, Komure O, Matsuura S, Kobatake K, Morimoto N, Abe K, Suzuki N, Aoki M, Kawata A, Hirai T, Kato T, Ogasawara K, Hirano A, Takumi T, Kusaka H, Hagiwara K, Kaji R, Kawakami H (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465(7295):223–226. https://doi.org/10.1038/nature08971

    Article  CAS  PubMed  Google Scholar 

  22. Yang Y, Hentati A, Deng HX, Dabbagh O, Sasaki T, Hirano M, Hung WY, Ouahchi K, Yan J, Azim AC, Cole N, Gascon G, Yagmour A, Ben-Hamida M, Pericak-Vance M, Hentati F, Siddique T (2001) The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 29(2):160–165. https://doi.org/10.1038/ng1001-160

    Article  CAS  PubMed  Google Scholar 

  23. Hadano S, Hand CK, Osuga H, Yanagisawa Y, Otomo A, Devon RS, Miyamoto N, Showguchi-Miyata J, Okada Y, Singaraja R, Figlewicz DA, Kwiatkowski T, Hosler BA, Sagie T, Skaug J, Nasir J, Brown RH Jr, Scherer SW, Rouleau GA, Hayden MR, Ikeda JE (2001) A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 29(2):166–173. https://doi.org/10.1038/ng1001-166

    Article  CAS  PubMed  Google Scholar 

  24. Kress JA, Kuhnlein P, Winter P, Ludolph AC, Kassubek J, Müller U, Sperfeld AD (2005) Novel mutation in the ALS2 gene in juvenile amyotrophic lateral sclerosis. Ann Neurol 58(5):800–803. https://doi.org/10.1002/ana.20665

    Article  CAS  PubMed  Google Scholar 

  25. Al-Saif A, Al-Mohanna F, Bohlega S (2011) A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol 70(6):913–919. https://doi.org/10.1002/ana.22534

    Article  CAS  PubMed  Google Scholar 

  26. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, de Jong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, McKenna-Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH Jr (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323(5918):1205–1208. https://doi.org/10.1126/science.1166066

    Article  CAS  PubMed  Google Scholar 

  27. Huizing M, Carrillo-Carrasco N, Malicdan MC, Noguchi S, Gahl WA, Mitrani-Rosenbaum S, Argov Z, Nishino I (2014) GNE myopathy: new name and new mutation nomenclature. Neuromuscul Disord 24(5):387–389. https://doi.org/10.1016/j.nmd.2014.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dimachkie MM, Barohn RJ (2014) Distal myopathies. Neurol Clin 32(3):817–842. https://doi.org/10.1016/j.ncl.2014.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nishino I, Noguchi S, Murayama K, Driss A, Sugie K, Oya Y, Nagata T, Chida K, Takahashi T, Takusa Y, Ohi T, Nishimiya J, Sunohara N, Ciafaloni E, Kawai M, Aoki M, Nonaka I (2002) Distal myopathy with rimmed vacuoles is allelic to hereditary inclusion body myopathy. Neurology 59(11):1689–1693

    Article  CAS  PubMed  Google Scholar 

  30. de Dios JK, Shrader JA, Joe GO, McClean JC, Williams K, Evers R, Malicdan MC, Ciccone C, Mankodi A, Huizing M, McKew JC, Bluemke DA, Gahl WA, Carrillo-Carrasco N (2014) Atypical presentation of GNE myopathy with asymmetric hand weakness. Neuromuscul Disord 24(12):1063–1067. https://doi.org/10.1016/j.nmd.2014.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(5):293–299

    Article  CAS  PubMed  Google Scholar 

  32. Eisenberg I, Avidan N, Potikha T, Hochner H, Chen M, Olender T, Barash M, Shemesh M, Sadeh M, Grabov-Nardini G, Shmilevich I, Friedmann A, Karpati G, Bradley WG, Baumbach L, Lancet D, Asher EB, Beckmann JS, Argov Z, Mitrani-Rosenbaum S (2001) The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat Genet 29(1):83–87. https://doi.org/10.1038/ng718

    Article  CAS  PubMed  Google Scholar 

  33. Keppler OT, Hinderlich S, Langner J, Schwartz-Albiez R, Reutter W, Pawlita M (1999) UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science 284(5418):1372–1376

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the family members for their cooperation, Dr. Aslıhan Tolun for supervising the genetic studies and her contribution to writing the manuscript, and TÜBITAK Advanced Genomics and Bioinformatics Group (IGBAM) for sharing with us the Turkish Exome Database.

Funding

This work was supported by the Boğaziçi University Research Fund grant number 5708 and the Scientific and Technological Research Council of Turkey grant number 110T252 (to AT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Çiğdem Köroğlu.

Ethics declarations

The study protocol was approved by the Boğaziçi University Institutional Review Board for Research with Human Participants. Informed consent was obtained from all the subjects according to the regulations of the board.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Figure 1

Simplified pedigree used for the initial whole-genome multipoint linkage analysis on Allegro. Because of the limitations in the program, unaffected siblings were not included and consanguinity between 407 and 408 was disregarded. (GIF 11 kb)

High resolution image (TIFF 2971 kb)

Supplementary Figure 2

Multipoint LOD scores for chromosomes that yielded positive scores. A, initial calculations for autosomes and pseudoautosomal regions using Allegro. B, detailed calculations using SimWalk at loci that yielded LOD scores > 3 in the initial analysis. (PDF 4733 kb)

Supplementary Figure 3

Chromatograms showing the candidate variant GNE c.2114A>G (p.His705Arg). (GIF 39 kb)

High resolution image (TIFF 5173 kb)

Supplementary Table 1

The list of all exonic and splicing variants detected at the disease locus 9p21.1-p12. False calls as indicated by IGV inspection, as well as variants with allele frequencies > 0.05, were filtered out. Novel, homozygous variant c.A2114G (p.His705Arg) in GNE was selected as the candidate mutation. (XLS 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köroğlu, Ç., Yılmaz, R., Sorgun, M.H. et al. GNE missense mutation in recessive familial amyotrophic lateral sclerosis. Neurogenetics 18, 237–243 (2017). https://doi.org/10.1007/s10048-017-0527-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-017-0527-3

Keywords

Navigation