Skip to main content

Advertisement

Log in

A simulation/optimization study to assess seawater intrusion management strategies for the Gaza Strip coastal aquifer (Palestine)

Une étude de simulation/optimisation pour évaluer les stratégies de gestion de l’intrusion d’eau de mer pour l’aquifère côtier de la bande Gaza (Palestine)

Un estudio de simulación/optimización para evaluar las estrategias de manejo de la intrusión de agua de mar en el acuífero costero de Gaza Strip (Palestina)

评价(巴勒斯坦)加沙地带沿海含水层海水入侵管理策略的模拟/最优化研究

HJUm estudo de simulação/otimização para avaliação de estratégias de gestão da intrusão salina para o aquífero costeiro da Faixa de Gaza (Palestina)

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Seawater intrusion is one of the major threats to freshwater resources in coastal areas, often exacerbated by groundwater overexploitation. Mitigation measures are needed to properly manage aquifers, and to restore groundwater quality. This study integrates three computational tools into a unified framework to investigate seawater intrusion in coastal areas and to assess strategies for managing groundwater resources under natural and human-induced stresses. The three components are a three-dimensional hydrogeological model for density-dependent variably saturated flow and miscible salt transport, an automatic calibration procedure that uses state variable outputs from the model to estimate selected model parameters, and an optimization module that couples a genetic algorithm with the simulation model. The computational system is used to rank alternative strategies for mitigation of seawater intrusion, taking into account conflicting objectives and problem constraints. It is applied to the Gaza Strip (Palestine) coastal aquifer to identify a feasible groundwater management strategy for the period 2011–2020. The optimized solution is able to: (1) keep overall future abstraction from municipal groundwater wells close to the user-defined maximum level, (2) increase the average groundwater heads, and (3) lower both the total mass of salt extracted and the extent of the areas affected by seawater intrusion.

Résumé

L’intrusion d’eau de mer est une des principales menaces pour les ressources d’eau douce dans les zones côtières, souvent exacerbées par la surexploitation des eaux souterraines. Des mesures d’atténuation sont nécessaires pour gérer de manière adéquate les aquifères, et pour restaurer la qualité des eaux souterraines. Cette étude intègre trois outils informatiques dans un cadre unifié pour investiguer l’intrusion d’eau de mer dans les zones côtières et pour évaluer les stratégiques de gestion des ressources en eaux souterraines sous contraintes naturelles et anthropiques. Les trois composants sont une modèle tridimensionnel hydrogéologique considérant des écoulements variables et dépendants de la densité en milieu saturé et le transport de sel miscible, une procédure de calibration automatique qui utilise les sorties de variables d’état du modèle pour estimer les paramètres sélectionnés du modèle, et un module d’optimisation qui couple un algorithme génétique avec le modèle de simulation. Le système de calcul est utilisé pour classer des stratégies alternatives pour la réduction de l’intrusion marine, en tenant en compte des objectifs contradictoires et des contraintes du problème. Il est appliqué à l’aquifère côtier de la bande de Gaza (Palestine) pour identifier une stratégie de gestion des eaux souterraines pour la période 2011–2020. La solution optimisée est en mesure de: (1) maintenir le futur volume pompé pour l’ensemble des puits municipaux, proche du niveau maximal défini par l’utilisateur, (2) augmenter la charge hydraulique moyenne des eaux souterraines, et (3) diminuer à la fois la masse totale de sel extrait et l’étendue des zones concernées par l’intrusion d’eau marine.

Resumen

La intrusión de agua de mar es una de las principales amenazas para los recursos de agua dulce en las área costeras, a menudo agravada por la sobreexplotación de agua subterránea. Las medidas de mitigación son necesarias para manejar adecuadamente los acuíferos, y para restaurar la calidad del agua subterránea. Este estudio integra tres herramientas computacionales en un esquema unificado para investigar la intrusión de agua de mar en áreas costeras y evaluar estrategias para el manejo de los recursos de agua subterránea bajo el estrés natural y el inducido por el hombre. Las tres componentes son un modelo hidrogeológico tridimensional para flujo variablemente saturado dependiente de la densidad y del transporte de sales miscibles, un procedimiento de calibración automática que usa salidas en estados variables a partir de un modelo para estimar los parámetros del modelo seleccionado, y un módulo de optimización que acopla un algoritmo genético con el mdoelo de simulación. Se usa el sistema computacional para clasificar las estrategias alternativas para la mitigación de la intrusión de agua de mar, teniendo en cuenta los objetivos en conflicto y las restricciones del problema. Se aplica al acuífero costero de Gaza Strip (Palestina) para identificar una estrategia factible para el manejo de agua subterránea en el período 2011–2020. La solución optimizada es capaz de: (1) mantener la extracción general futura a partir de los pozos municipales de agua subterránea cerca del nivel máximo definido por los usuarios, (2) incrementar las cargas promedio de agua subterránea, y (3) reducir tanto la masa total de la sal extraída como la extensión de las zonas afectadas por la intrusión de agua de mar.

摘要

海水入侵是沿海地区淡水资源的主要威胁之一,常常由于地下水超采而进一步恶化。需要采取缓解措施来科学管理含水层,恢复地下水质。这项研究使三个计算工具合成一个统一的框架,以调查沿海地区的海水入侵和评价自然和人为状况下地下水资源的管理策略。三个主要组分为一个密度制约的易变饱和水流和可混合盐分运移的三维水文地质模型、采用计算机输出状态变量估算所选模型参数的自动校正程序,及一个连接遗传算法和模拟模型的最优化模块。考虑到不一致目标和问题限制等因素,计算系统用于对缓解海水入侵的替代策略进行排列。这个计算系统应用于(巴勒斯坦)加沙地带沿海含水层,以确定2011-2020年切实可行的地下水管理策略。最优化的解决方法能够:(1)保持接近使用者确定的最高水位的市政地下水井未来总的抽取量;(2)增加平均地下水水头;(3)降低抽取的盐分总质量及减少受海水入侵影响的区域范围。

Resumo

A intrusão salina é uma das maiores ameaças aos recursos de água doce nas zonas costeiras, muitas vezes agravada pela sobre-exploração das águas subterrâneas. São necessárias medidas de mitigação para gerir adequadamente os aquíferos e para restaurar a qualidade da água subterrânea. Este estudo integra três ferramentas computacionais numa estrutura unificada para investigar a intrusão salina nas zonas costeiras e avaliar estratégias para a gestão de recursos hídricos subterrâneos sob pressões naturais e induzidas pelo homem. Os três componentes são um modelo hidrogeológico tridimensional para fluxo variavelmente saturado dependente da densidade e transporte miscível de sal, um procedimento de calibração automático que usa as variáveis de estado resultantes do modelo para estimar os parâmetros do modelo selecionado, e um módulo de otimização que agrupa um algoritmo genético com o modelo de simulação. O sistema computacional é usado para classificar as estratégias alternativas para mitigação da intrusão de água do mar, tendo em conta os objetivos contraditórios e as condicionantes do problema. É aplicado ao aquífero costeiro da Faixa de Gaza (Palestina) para identificar uma estratégia de gestão de águas subterrâneas viável para o período 2011–2020. A solução otimizada é capaz de: (1) manter a extração futura global em furos de água subterrânea municipais perto do nível máximo definido pelo utilizador, (2) aumentar os potenciais hidráulicos médios da água subterrânea, e (3) reduzir tanto a massa total de sal extraído, como a extensão das áreas afetadas pela intrusão salina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahlfeld DP, Mulligan AE (2000) Optimal management of flow in groundwater systems. Academic, San Diego

    Google Scholar 

  • Antonellini M, Mollema P, Giambastiani B, Bishop K, Caruso L, Minchio A, Pellegrini L, Sabia M, Ulazzi E, Gabbianelli G (2008) Salt water intrusion in the coastal aquifer of the southern Po Plain, Italy. Hydrogeol J 16:1541–1556. doi:10.1007/s10040-008-0319-9

    Article  Google Scholar 

  • Barlow P (2005) Use of simulation-optimization modeling to assess regional ground-water systems. US Geol Surv Fact Sheet 2005–3095

  • Bear J, Verruijt A (1987) Modeling groundwater flow and pollution. Reidel, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Bear J, Cheng AHD, Sorek S, Ouazar D, Herrera I (1999) Seawater intrusion in coastal aquifers: concepts, methods, and practices. Kluwer, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Bhattacharjya RK, Datta B (2005) Optimal management of coastal aquifers using linked simulation optimization approach. Water Resour Manag 19(3):295–320. doi:10.1007/s11269-005-3180-9

    Article  Google Scholar 

  • Carrera J, Neuman SP (1986) Estimation of aquifer parameters under transient and steady-state conditions: 2. uniqueness, stability and solution algorithms. Water Resour Res 22(2):211–227

    Article  Google Scholar 

  • Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13:206–222. doi:10.1007/s10040-004-0404-7

    Article  Google Scholar 

  • Carrera J, Hidalgo JJ, Slooten LJ, Vázquez-Suñé E (2009) Computational and conceptual issues in the calibration of seawater intrusion models. Hydrogeol J 18:131–145. doi:10.1007/s10040-009-0524-1

    Article  Google Scholar 

  • Carroll DL (1996) Genetic algorithms and optimizing chemical oxygen-iodine lasers. In: Developments in theoretical and applied mechanics, vol XVIII. The University of Alabama, Tuscaloosa, AL, pp 411–424

  • Cau P, Lecca G, Muscas L, Barrocu G, Uras G (2002) Saltwater intrusion in the Oristano plain (Sardinia). In: Proceedings of the Salt Water Intrusion Meeting (SWIM), Delft, The Netherlands, 6–10 May 2002

  • Cheng AHD, Halhal D, Naji A, Ouazar D (2000) Pumping optimization in saltwater intruded coastal aquifers. Water Resour Res 36(8):2155–2165

    Article  Google Scholar 

  • Custodio E (2010) Coastal aquifers of Europe: an overview. Hydrogeol J 18(1):269–280. doi:10.1007/s10040-009-0496-1

    Article  Google Scholar 

  • Dan J, Greitzer Y (1967) The effect of soil landscape and Quaternary geology on the distribution of saline and fresh water aquifers in the Coastal Plain of Israel. Publ. 670, TAHAL, Tel Aviv

  • Das A, Datta B (1999) Development of multiobjective management models for coastal aquifers. J Water Resour Plan Manag 125:76–87

    Article  Google Scholar 

  • Das A, Datta B (2001) Application of optimisation techniques in groundwater quantity and quality management. Sadhana 26(4):293–316. doi:10.1007/BF02703402

    Article  Google Scholar 

  • Deidda R, Marrocu M, Caroletti G, Pusceddu G, Langousis A, Lucarini V, Puliga M, Speranza A (2013) Climate model validation and selection for hydrological applications in representative Mediterranean catchments. Hydrol Earth Syst Sci Discuss 10:9105–9145. doi:10.5194/hessd-10-9105-2013

    Article  Google Scholar 

  • Dhar A, Datta B (2009) Saltwater intrusion management of coastal aquifers. I: linked simulation–optimization. J Hydrol Eng 14:1263–1272

    Article  Google Scholar 

  • Doherty J (2002) PEST model-independent parameter estimation. Watermark, Brisbane, Australia

  • Duan Q, Sorooshian S, Gupta VK (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031

    Article  Google Scholar 

  • Gambolati G, Putti M, Paniconi C (1999) Three-dimensional model of coupled density-dependent flow and miscible salt transport. In: Seawater intrusion in coastal aquifers: concepts, methods, and practices. Kluwer, Dordrecht, The Netherlands, pp 315–362

  • Goldberg DE (1989) Genetic algorithms in search optimization and machine learning. Addison Wesley, Reading, UK

    Google Scholar 

  • Gorelick SM (1983) A review of distributed parameter groundwater management modeling methods. Water Resour Res 19(2):305–319. doi:10.1029/WR019i002p00305

    Article  Google Scholar 

  • GRIDA3 (2011) GRIDA3: Gestore di RIsorse condivise per Analisi di dati e Applicazioni Ambientali [ GRIDA3: a shared resources manager for environmental data analysis and applications]. http://grida3.crs4.it. 6 November 2014

  • Hamad JT, Eshtawi TA, Abushaban AM, Habboub MO (2012) Modeling the impact of land-use change on water budget of Gaza Strip. J Water Res Prot 4:325–333

    Article  Google Scholar 

  • Hill MC (1998) Methods and guidelines for effective model calibration. US Geol Surv Water Resour Invest Rep 98-4005

  • Huyakorn PS, Thomson SD, Thompson BM (1984) Techniques for making finite elements competitive in modeling flow in variably saturated porous media. Water Resour Res 20(8):1099–1115

    Article  Google Scholar 

  • Kerrou J, Lecca G, Murgia F, Renard P (2007) Grid-enabled simulation of the impact of exploitation uncertainty on the seawater intrusion of the Korba aquifer (Tunisia). Proceedings of IST-Africa Conference, Maputo, Mozambique, May 2007

  • Lecca G (2000) Implementation and testing of the CODESA-3D model for density dependent flow and transport problems in porous media. CRS4-TECH-REP-00/40, Center for Advanced Studies, Research and Development (CRS4), Cagliari, Italy

  • Lecca G, Cau P (2006) Automatic calibration of a 3D groundwater model applied to the Muravera-Flumendosa coastal aquifer (SE Sardinia, Italy). In: Proceedings of the XVI International Conference on Computational Methods in Water Resources, Copenhagen, Denmark, June 2006

  • Lecca G, Berjamy B, Paniconi C, El Hebil A (2001) Numerical modeling of seawater intrusion in the Sahel region of the Atlantic coast of Morocco. Proceedings of the First International Conference on Saltwater Intrusion and Coastal Aquifers – Monitoring, Modeling, and Management, Essaouira, Morocco, 23–25 April 2001

  • Lecca G, Lai C, Murgia F, Biddau R, Fanfani L, Maggi P (2009) AQUAGRID: an extensible platform for collaborative problem solving in groundwater protection. Earth Sci Inform 2(1–2):83–95

    Article  Google Scholar 

  • Lecca G, Petitdidier M, Hluchy L, Ivanovic M, Kussul N, Ray N, Thieron V (2012) Grid computing technology for hydrological applications. J Hydrol 403(1–2):186–199

    Google Scholar 

  • Levenberg K (1944) A method for the solution of certain problems in least squares. Q Appl Math 2:164–168

    Google Scholar 

  • Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441. doi:10.1137/0111030

    Article  Google Scholar 

  • Melloul A, Collin M (2000) Sustainable groundwater management of the stressed Coastal aquifer in the Gaza region. Hydrol Sci J 45(1):147–159

    Article  Google Scholar 

  • Moe H, Hossain R, Fitzgerald R, Banna M, Mushtaha A, Yaqubi A (2001) Application of a 3-dimensional coupled flow and transport model in the Gaza Strip. In: First International Conference on Saltwater Intrusion and Coastal Aquifers – Monitoring, Modeling, and Management, 23–25 April 2001, Essaouira, Morocco

  • Ndambuki JM, Otieno FAO, Stroet CBM, Veling EJM (2000) Groundwater management under uncertainty: a multi-objective approach. Water SA 26(1):35–42

    Google Scholar 

  • Palestinian Water Authority (PWA) (2007) Agricultural and municipal water demand in Gaza governorates for 2006. PWA, Ramallah, Palestine

    Google Scholar 

  • Paniconi C, Khlaifi I, Lecca G, Giacomelli A, Tarhouni J (2001) Modeling and analysis of seawater intrusion in the coastal aquifer of eastern Cap-Bon, Tunisia. Transp Porous Media 43(1):3–28

    Article  Google Scholar 

  • Poeter EP, Hill MC (1997) Inverse models: a necessary next step in groundwater modeling. Ground Water 35(2):250–260

    Article  Google Scholar 

  • Putti M, Paniconi C (1995) Picard and Newton linearization for the coupled model of saltwater intrusion in aquifers. Adv Water Resour 18(3):159–170

    Article  Google Scholar 

  • Qahman K, Larabi A (2006) Evaluation and numerical modeling of seawater intrusion in the Gaza aquifer (Palestine). Hydrogeol J 14:713–728. doi:10.1007/s10040-005-003-2

    Article  Google Scholar 

  • Qahman K, Larabi A, Ouazar D, Naji A, Cheng AHD (2005) Optimal and sustainable extraction of groundwater in coastal aquifers. Stoch Environ Res Risk Assess 19(2):99–110

    Article  Google Scholar 

  • Qahman K, Larabi A, Ouzar D, Naji A, Cheng HD (2009) Optimal extraction of groundwater in Gaza coastal aquifer. J Water Res Prot 4:249–259. doi:10.4236/jwarp.2009.14030

    Article  Google Scholar 

  • Sanford WE, Pope JP (2010) Current challenges using models to forecast seawater intrusion: lessons from the Eastern Shore of Virginia, USA. Hydrogeol J 18:73–93. doi:10.1007/s10040-009-0513-4

    Article  Google Scholar 

  • Sanz E, Voss CI (2006) Inverse modeling for seawater intrusion in coastal aquifers: insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem. Adv Water Resour 29:439–457

    Article  Google Scholar 

  • Shamir U, Bear J, Gamliel A (1984) Optimal annual operation of a coastal aquifer. Water Resour Res 20(4):435–444

    Article  Google Scholar 

  • Shomar B, Abu Fakher S, Yahya A (2010) Assessment of groundwater quality in the Gaza Strip, Palestine using GIS mapping. J Water Res Prot 2:93–104. doi:10.4236/jwarp.2010.22011

    Article  Google Scholar 

  • Skahill BE, Doherty J (2006) Efficient accommodation of local minima in watershed model calibration. J Hydrol 329:122–139. doi:10.1016/j.jhydrol.2006.02.005

    Article  Google Scholar 

  • Sulis M, Paniconi C, Marrocu M, Huard D, Chaumont D (2012) Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions. Water Resour Res 48:W12510. doi:10.1029/2012WR012304

    Article  Google Scholar 

  • Sumner NR, Fleming PM, Bates BC (1997) Calibration of a modified SFB model for twenty-five Australian catchments using simulated annealing. J Hydrol 197(1–4):166–188. doi:10.1016/S0022-1694(96)03277-5

    Article  Google Scholar 

  • UNEP/DEWA/GRID-Geneva (2002) United Nations Environment Program, Division for Environmental Warning and Assessment, Global Resource Information Database (GRID) Network, December 2002. http://www.grid.unep.ch. 6 November 2014

  • Werner AD, Gallagher MR (2006) Characterization of sea-water intrusion in the Pioneer Valley, Australia using hydrochemistry and three-dimensional numerical modeling. Hydrogeol J 14:1452–1469. doi:10.1007/s10040-006-0059-7

    Article  Google Scholar 

  • Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2012) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26. doi:10.1016/j.advwatres.2012.03.004

    Article  Google Scholar 

  • Willis R, Finney BA (1988) Planning model for optimal control of saltwater intrusion. J Water Resour Plan Manag 114(2):163–178

    Article  Google Scholar 

  • Yakirevich A, Melloul A, Sorek S, Shaath S, Borisov V (1998) Simulation of seawater intrusion into the Khan Yunis area of the Gaza Strip coastal aquifer. Hydrogeol J 6:549–559

    Article  Google Scholar 

  • Yang R, Kalin M, Zhang Y, Lin X, Zou L (2001) Multi-objective optimization for sustainable groundwater resource management in a semiarid catchment. Hydrol Sci J 46(1):55–72. doi:10.1080/02626660109492800

  • Zghibi A, Zouhri L, Tarhouni J (2011) Groundwater modeling and marine intrusion in the semi-arid systems (Cap-Bon, Tunisia). Hydrol Process 25:1822–1836. doi:10.1002/hyp.7948

    Article  Google Scholar 

  • Zhou X, Chen M, Liang C (2003) Optimal schemes of groundwater exploitation for prevention of seawater intrusion in the Leizhou Peninsula in southern China. Environ Geol 43:978–985

    Google Scholar 

Download references

Acknowledgements

This study has been partially funded by the FP7-ENV-2009-1 project “Climate induced Changes on the Hydrology of Mediterranean Basins (CLIMB)” (GA 244151) and the Sardinian Regional Authority. The authors gratefully acknowledge the collaboration of Prof. Samir Afifi (Gaza Islamic University of Gaza) as the Palestinian CLIMB project coordinator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Dentoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dentoni, M., Deidda, R., Paniconi, C. et al. A simulation/optimization study to assess seawater intrusion management strategies for the Gaza Strip coastal aquifer (Palestine). Hydrogeol J 23, 249–264 (2015). https://doi.org/10.1007/s10040-014-1214-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1214-1

Keywords

Navigation