Skip to main content
Log in

Characterisation of sea-water intrusion in the Pioneer Valley, Australia using hydrochemistry and three-dimensional numerical modelling

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Sea-water intrusion is actively contaminating fresh groundwater reserves in the coastal aquifers of the Pioneer Valley, north-eastern Australia. A three-dimensional sea-water intrusion model has been developed using the MODHMS code to explore regional-scale processes and to aid assessment of management strategies for the system. A sea-water intrusion potential map, produced through analyses of the hydrochemistry, hydrology and hydrogeology, offsets model limitations by providing an alternative appraisal of susceptibility. Sea-water intrusion in the Pioneer Valley is not in equilibrium, and a potential exists for further landward shifts in the extent of saline groundwater. The model required consideration of tidal over-height (the additional hydraulic head at the coast produced by the action of tides), with over-height values in the range 0.5–0.9 m giving improved water-table predictions. The effect of the initial water-table condition dominated the sensitivity of the model to changes in the coastal hydraulic boundary condition. Several salination processes are probably occurring in the Pioneer Valley, rather than just simple landward sea-water advancement from “modern” sources of marine salts. The method of vertical discretisation (i.e. model-layer subdivision) was shown to introduce some errors in the prediction of water-table behaviour.

Résumé

L’intrusion de l’eau de mer est en train de contaminer activement les réserves d’eau souterraine potable dans les aquifères côtiers de la vallée de Pioneer au nord-est de l’Australie. Un modèle en trois dimensions de l’intrusion de l’eau de mer a était réalisé en utilisant le code MODHMS pour étudier les processus à l’échelle régionale et faciliter l’évaluation de stratégies de gestion du système. Une carte piézomètrique de l’intrusion de l’eau de mer, réalisée grâce à l’étude de l’hydrogéochimie, l’hydrologie et l’hydrogéologie, compense les limites du modèle en permettant une évaluation alternative de la vulnérabilité. L’intrusion de l’eau de mer dans la vallée de Pioneer n’est pas en équilibre et un potentiel existe pour des déplacements plus à l’intérieur des terres de l’étendue des eaux souterraines salées. Le modèle devait prendre en compte les surélévations dues aux marées (la charge hydraulique supplémentaire au niveau de la côte produite par l’action des marées), avec des valeurs de surélévations de l’ordre de 0.5–0.9 m entraînant de meilleures prédictions du niveau de la nappe. L’effet de l’état initial de la nappe était prédominant sur la sensibilité du modèle par rapport aux changements de la condition hydraulique aux limites au niveau de la côte. Plusieurs processus de salinisation doivent probablement avoir lieu dans la vallée de Pioneer et non pas uniquement une simple avancée d’eau de mer dans les terres à partir de sources “modernes” de sels marins. La méthode de la discrétisation verticale (subdivision en couches dans le modèle) s’est révélée être à l’origine d’erreurs dans la prédiction du comportement de la nappe.

Resumen

La intrusión de agua de mar está contaminando las reservas de agua subterráneas de agua dulce en los acuíferos costeños en Pioneer Valley, noreste de Australia. Se ha desarrollado un modelo tridimensional de intrusión de agua de mar mediante el uso de código MODHMS para explorar procesos de escala regional y para asistir la evaluación de estrategia para el manejo del sistema. Un mapa de potencial de intrusión de agua de mar, producido mediante el análisis de hidroquímica, hidrología e hidrogeología balancea las limitaciones del modelo al proporcionar una asesoría alternativa de susceptibilidad. En Pioneer Valley la intrusión de agua del mar no está en equilibrio y existe el potencial de movimiento en la extensión de agua subterranea salada desde el mar hacia la tierra. El modelo requirió considerar la carga hidráulica adicional en la costa producida por la acción de las mareas (sobre-altura de la marea), con una sobre-altura en el rango de 0.5–0.9 m, locual produjo mejores predicciones de la mesa de agua. El efecto de la condición inicial de la mesa de agua dominaba la sensitividad del modelo a cambios en la condición de límite hidráulico de la costa. Es probable que múltiples procesos de salinización estén ocurriendo en Pioneer Valley, en lugar de un avance simple de agua de mar hacia la tierra de fuentes “modernas” de sales marinas. Se observó que el método de discretización vertical (subdivisión de capas del modelo) introduce algunos errores en las predicciones de cambios en el comportamiento de la mesa de agua.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abarca E, Carrera J, Voss C, Sánchez-Vila X (2002) Effect of the aquifer bottom morphology in the evolution of the saltwater–freshwater interface. XVII Salt Water Intrusion Meeting, 6–10 May 2002, Delft

  • Ataie-Ashtiani B (2001) Tidal effects on groundwater dynamics in unconfined aquifers. Hydrol Process 15:655–669

    Article  Google Scholar 

  • Bakker M, Schaars F (2003) The Sea Water Intrusion (SWI) package manual, version 2.0. http://www.engr.uga.edu/mbakker/swi.html. Cited 3 July 2005

  • Bakker M, Oude Essink GHP, Langevin CD (2004) The rotating movement of three immiscible fluids: a benchmark problem. J Hydrol 287:270–278

    Article  Google Scholar 

  • Baskaran S, Budd KL, Larsen RM, Bauld J (2002) A groundwater quality assessment of the lower Pioneer catchment, Qld. Department of Agriculture, Fisheries and Forestry, Bureau of Rural Sciences, Canberra, Australia

    Google Scholar 

  • Bedford K (1978) Report on groundwater resources: Pioneer Valley. Queensland Irrigation and Water Supply Commission, Queensland Government, Brisbane, Australia, p 197

    Google Scholar 

  • Bedford K (1982) Aspects of the hydrogeology of some north Queensland aquifers. Water Resources Commission, Queensland Government, Brisbane, Australia, p 96

    Google Scholar 

  • Bond LD, Bredehoeft JD (1987) Origins of seawater intrusion in a coastal aquifer: a case study of the Pajaro Valley, California. J Hydrol 92:363–388

    Article  Google Scholar 

  • Brady MM, Kunkel LA (2003) A practical technique for quantifying drainage porosity. In: Proceedings of 2003 Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Assessment, and Remediation, 20–22 August, 2003, Costa Mesa, USA

  • Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24:755–769

    Google Scholar 

  • Diersch HJG, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25:899–944

    Article  Google Scholar 

  • Doherty J (2004) Manual for PEST: 5th edition. Watermark Numerical Computing, Australia. Available from http://www.sspa.com/pest. Cited 15 January 2005

  • Driscoll FG (1989) Groundwater and wells, 2nd edn. Johnson Filtration Systems Inc, Minnesota

    Google Scholar 

  • Gassama N, Violette S, D’Ozouville N, Dia A, Jendrzejewski N (2003) Multiple origin of water salinization in a coastal aquifer, Bay of Bengal. In: Hydrology of the Mediterranean and semiarid regions, IAHS Publ. No. 278, IAHS, Wallingford, UK, pp 471–476

  • Gingerich SB, Voss CI (2005) Three-dimensional variable-density flow simulation of a coastal aquifer in southern Oahu, Hawaii, USA. Hydrogeol J 13:436–450

    Article  Google Scholar 

  • Glover RE (1964) The pattern of fresh-water flow in a coastal aquifer. In: Sea water in coastal aquifers. Geol Surv Water-Supply Pap 1613:32–35

  • Gourlay MR, Hacker JLF (1986) Pioneer River estuary sedimentation studies. Department of Civil Engineering, University of Queensland, Brisbane, Australia, p 207

    Google Scholar 

  • Guo W, Langevin CD (2002) User’s guide to SEAWAT: a computer program for simulation of three-dimensional variable-density ground-water flow: techniques of water-resources investigations, vol 6, Chapt A7, USGS, Reston, VA, p 77

  • Guvanasen V, Wade SC, Barcelo MD (2000) Simulation of regional ground water flow and salt water intrusion in Hernando County, Florida. Ground Water 38:772–783

    Article  Google Scholar 

  • Harbaugh AW, McDonald MG (1996) Programmer’s documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model. US Geological Survey Open-File Report 96–486, USGS, Reston, VA, p 220

  • Hassan A, Chapman J, Pohlmann K (2003) Uncertainty analysis of seawater intrusion and implications for radionuclide transport at Amchitka Island’s underground nuclear tests. In: Cheng AD, Ouazar D (eds) Coastal aquifer management: monitoring, modeling, and case studies. Lewis, Boca Raton, FL, pp 207–231

    Google Scholar 

  • Hem JD (1989) Study and interpretation of the chemical characteristics in natural water, 3rd edn. Unites States Geological Survey Water-Supply Paper 2254, Washington, DC

  • Henry HR (1964) Effects of dispersion on salt encroachment in coastal aquifers. In: Sea water in coastal aquifers. US Geological Survey Water-Supply Paper 1613-C, USGS, Reston, VA, pp 70–84

  • Hunt B (1998) Contaminant source solutions with scale-dependent dispersivities. J Hydrol Eng 3:268–275

    Article  Google Scholar 

  • Huyakorn PS, Anderson PF, Mercer JW, White WO Jr (1987) Saltwater intrusion in aquifers: development and testing of a three-dimensional finite element model. Water Resour Res 23:293–312

    Article  Google Scholar 

  • HydroGeoLogic Inc. (1994) DSTRAM: density-dependent solute transport analysis model-Documentation and user’s guide, Version 4.1., HydroGeoLogic Inc., Herndon, VA

    Google Scholar 

  • HydroGeoLogic Inc. (2003) MODHMS software (Version 2.0) documentation. Volume I: groundwater flow modules, Volume II: transport modules, Volume III: surface water flow modules. HydroGeoLogic Inc., Herndon, VA

    Google Scholar 

  • Jensen AR (1972) Mackay 1:250 000 geological series explanation notes. Bureau of Mineral Resources, Canberra, Australia

    Google Scholar 

  • Johannsen K, Kinzelbach W, Oswald S, Wittum G (2002) The saltpool benchmark problem: numerical simulation of saltwater upcoming in a porous medium. Adv Water Resour 25(3):335–348

    Article  Google Scholar 

  • Jones BF, Vengosh A, Rosenthal E, Yechieli Y (1999) Geochemical investigations. In: Bear J, Cheng AD-D, Sorek S, Herrera I, Ouazar D (eds) Seawater intrusion in coastal aquifers: concepts, methods and practices. Kluwer, Dordrecht, pp 51–71

    Google Scholar 

  • Kabbour BB, Zouhri L, Mania J (2005) Overexploitation and continuous drought effects on groundwater yield and marine intrusion: considerations arising from the modelling of Mamora coastal aquifer, Morocco. Hydrol Process 19:3765–3782

    Article  Google Scholar 

  • Kim Y, Lee K-S, Koh D-C, Lee D-H, Lee S-G, Park W-B, Koh G-W, Woo N-C (2003) Hydrogeochemical and isotopic evidence of groundwater salinisation in a coastal aquifer: a case study in Jeju volcanic island, Korea. J Hydrol 270:282–294

    Article  Google Scholar 

  • Kuhanesan S, Durick AM, Werner AD, Weeks SW, Murphy SF (2005) Report 3: numerical modelling of the Pioneer Valley groundwater flow system. Groundwater Amendment to the Pioneer Valley Water Resources Plan Project. Department of Natural Resources and Mines, Queensland Government, Brisbane, p 86

    Google Scholar 

  • Langevin CD (2003) Simulation of submarine ground water discharge to a marine estuary: Biscayne Bay, Florida. Ground Water 41:758–771

    Article  Google Scholar 

  • Langevin CD, Oude Essink GHP, Panday S, Bakker M, Prommer H, Swain ED, Jones W, Beach M, Barcelo M (2003) MODFLOW-based tools for simulation of variable-density groundwater flow. In: Cheng AHD, Ouazar D (eds) Coastal aquifer management: monitoring, modeling, and case studies. CRC Press, Boca Raton, FL, pp 49–76

  • Mantoglou A (2003) Pumping management of coastal aquifers using analytical models of saltwater intrusion. Water Resour Res 39:SBH51–SBH512

    Article  Google Scholar 

  • McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. Techniques of water-resources investigations of the United States Geological Survey, vol 6 Chapt A1. US Geological Survey, Reston, USA

    Google Scholar 

  • McKenna SA, Doherty J, Hart DB (2003) Non-uniqueness of inverse transmissivity field calibration and predictive transport modelling. J Hydrol 281:265–280

    Article  Google Scholar 

  • McMahon GA (2004) An integrated hydrogeological/hydrogeochemical approach to characterising groundwater zonations within a Quaternary coastal deltaic aquifer: The Burdekin River Delta, northern Queensland. PhD Thesis, Queensland University of Technology, Brisbane, Australia

  • McMahon GA, Cox ME, McDonell (2005) Conceptualising seawater intrusion processes in Queensland coastal aquifers by use of cumulative frequency distribution curves. In: Acworth, Macky, Merrick (eds) CD Proceedings, Where Waters Meet International Conference, Auckland, 29 November–1 December 2005. ISBN 0-473-10627-2, New Zealand Hydrological Society, Wellington

  • Murphy SF, Sorensen RC (2000) Develop a water resource management strategy for the Mackay coastal aquifer system. Department of Natural Resources, Queensland Government, Mackay, Australia, p 62

    Google Scholar 

  • Murphy SF, Kuhanesan S, Foster LH, Durick AM (2005) Report 1: Conceptualisation of groundwater resources for the Pioneer Valley flow model. Groundwater amendment to the Pioneer Valley Water Resources Plan. Department of Natural Resources and Mines, Queensland Government, Brisbane, Australia, p 134

    Google Scholar 

  • Nielsen P (1990) Tidal dynamics of the water table in beaches. Water Resour Res 26:2127–2135

    Article  Google Scholar 

  • Nielsen P (1999) Groundwater dynamics and salinity in coastal barriers. J Coast Res 15:732–740

    Google Scholar 

  • Neilson-Welch L, Smith L (2001) Saline water intrusion adjacent to the Fraser River, Richmond, British Columbia. Can Geotech J 38:67–82

    Article  Google Scholar 

  • NR&M (2003) Information Report: Pioneer Valley proposal to prepare an amending draft water resource plan. Water planning Group of the Department of Natural Resources and Mines, Queensland Government, Brisbane, Australia, p 51

  • Oude Essink GHP (1998) MOC3D adapted to simulate 3D density-dependent groundwater flow. In: Proceedings of the MODFLOW 98 Conference, Golden, CO, pp 291–303

  • Oude Essink GHP (2001) Salt water intrusion in a three-dimensional groundwater system in The Netherlands: a numerical study. Transp Porous Media 43:137–158

    Article  Google Scholar 

  • Panday S, Huyakorn PS (2004) A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Adv Water Resour 27:361–382

    Article  Google Scholar 

  • Park CH, Aral MM (2004) Multi-objective optimization of pumping rates and well placement in coastal aquifers. J Hydrol 290:80–99

    Article  Google Scholar 

  • Park SC, Yun ST, Chae GT, Yoo IS, Shin KS, Heo CH, Lee SK (2005) Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. J Hydrol 313(3–4):182

    Article  Google Scholar 

  • Pattle Delamore Partners Ltd (2002) Groundwater model audit guidelines: prepared for the Ministry for the Environment, New Zealand Government, Auckland, p 225

    Google Scholar 

  • Post VEA (2004) Groundwater salinization processes in the coastal area of the Netherlands due to transgressions during the Holocene. PhD Thesis, Vrije University, Amsterdam

  • Reilly TE, Goodman AS (1985) Quantitative analysis of saltwater-freshwater relationships in groundwater systems: a historical perspective. J Hydrol 80:125–160

    Article  Google Scholar 

  • Richter BC, Kreitler CW (1993) Geochemical techniques for identifying sources of ground-water salinisation. CRC Press, Boca Raton, FL

    Google Scholar 

  • Sadeg SA, Karahanoglu N (2001) Numerical assessment of seawater intrusion in the Tripoli region, Libya. Environ Geol 40:1151–1168

    Article  Google Scholar 

  • Schincariol RA, Schwartz FW, Mendoza CA (1994) On the generation of instabilities in variable density flow. Water Resour Res 30(4):913–927

    Article  Google Scholar 

  • Sherif MM, Hamza KI (2001) Mitigation of seawater intrusion by pumping brackish water. Transp Porous Media 43:29–44

    Article  Google Scholar 

  • Sherif MM, Singh VP (2002) Effect of groundwater pumping on seawater intrusion in coastal aquifers. J Agr Mar Sci 7:61–67

    Google Scholar 

  • Shoemaker WB (2004) Important observations and parameters for a salt water intrusion model. Ground Water 42:829–840

    Article  Google Scholar 

  • Souza WR, Voss CI (1987) Analysis of an anisotropic coastal aquifer system using variable-density flow and solute transport simulation. J Hydrol 92:17–41

    Article  Google Scholar 

  • van Dam JC (1999) Exploitation, restoration and management. In: Bear J, Cheng AD-D, Sorek S, Herrera I, Ouazar D (eds) Seawater intrusion in coastal aquifers: concepts, methods and practices. Kluwer, Dordrecht, pp 73–125

    Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Voss CI, Provost AM (2002) SUTRA-a model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Open-File Report 02-4231, USGS, Reston, VA, p 250

  • Weight WD, Sonderegger JL (2000) Manual of applied field hydrogeology. McGraw-Hill, New York, p 609

    Google Scholar 

  • Werner AD (2004) The interaction between a tidal estuary and a shallow unconfined aquifer: saltwater intrusion and environmental impacts in the riparian zone. PhD Thesis, University of Queensland, Brisbane, Australia

  • Werner AD, Reading LP, Murphy SF, McDonell ML, McMahon GA (2005) Seawater intrusion in the Pioneer Valley, north-eastern Australia: conceptualisation and implications for modelling. In: Acworth, Macky, Merrick (eds) CD Proceedings, Where Waters Meet International Conference, Auckland, 29 November–1 December 2005, ISBN 0-473-10627-2, New Zealand Hydrological Society, Wellington

  • Yakirevich A, Melloul A, Sorek S, Shaath S, Borisov C (1998) Simulation of seawater intrusion into the Khan Yunis area of the Gaza Strip coastal aquifer. Hydrogeol J 6:549–559

    Article  Google Scholar 

  • Zhang Q, Volker RE, Lockington DA (2004) Numerical investigation of seawater intrusion at Gooburrum, Bundaberg, Queensland, Australia. Hydrogeol J 12:674–687

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to gratefully acknowledge the Queensland Department of Natural Resources and Mines (NR&M) for providing funding for this project. The authors are thankful for technical assistance provided by NR&M Water Assessment staff and for the assistance with MODHMS given by Dr Sorab Panday. We also thank three anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Werner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, A.D., Gallagher, M.R. Characterisation of sea-water intrusion in the Pioneer Valley, Australia using hydrochemistry and three-dimensional numerical modelling. Hydrogeol J 14, 1452–1469 (2006). https://doi.org/10.1007/s10040-006-0059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-006-0059-7

Keywords

Navigation