Skip to main content

Advertisement

Log in

Impact of climate change on irrigation requirements in terms of groundwater resources

Impact du changement climatique sur les besoins en eaux souterraines pour l’irrigation

Impacto del cambio climático en los requerimientos de riego en término de los recursos de agua subterránea

气候变化影响下灌溉对地下水的需求

Impacte das alterações climáticas nas exigências de rega em termos de recursos hídricos subterrâneos

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Climate change affects not only water resources but also water demand for irrigation. A large proportion of the world’s agriculture depends on groundwater, especially in arid and semi-arid regions. In several regions, aquifer resources face depletion. Groundwater recharge has been viewed as a by-product of irrigation return flow, and with climate change, aquifer storage of such flow will be vital. A general review, for a broad-based audience, is given of work on global warming and groundwater resources, summarizing the methods used to analyze the climate change scenarios and the influence of these predicted changes on groundwater resources around the world (especially the impact on regional groundwater resources and irrigation requirements). Future challenges of adapting to climate change are also discussed. Such challenges include water-resources depletion, increasing irrigation demand, reduced crop yield, and groundwater salinization. The adaptation to and mitigation of these effects is also reported, including useful information for water-resources managers and the development of sustainable groundwater irrigation methods. Rescheduling irrigation according to the season, coordinating the groundwater resources and irrigation demand, developing more accurate and complete modeling prediction methods, and managing the irrigation facilities in different ways would all be considered, based on the particular cases.

Résumé

Le changement climatique impacte non seulement les ressources en eau, mais également la demande en eau pour l’irrigation. Une très grande partie de l’agriculture mondiale dépend de l’eau souterraine, en particulier dans les régions arides et semi-arides. Dans plusieurs régions, les ressources en eaux souterraines sont soumises à de sévères diminutions de niveaux piézométriques. La recharge des eaux souterraines est assurée par les précipitations mais également par l’eau de l’irrigation non utilisée par les plantes qui s’infiltre ; avec le changement climatique, le stockage dans les aquifères de tels flux sera essentiel. Une revue générale, à destination d’un large public, a été effectuée concernant le réchauffement planétaire et les ressources en eaux souterraines, synthétisant les méthodes utilisées pour analyser les scénarios de changement climatique et l’influence de ces changements prédits sur les ressources en eaux souterraines de part le monde (spécialement l’impact sur les ressources en eaux souterraines régionales et les demandes pour l’irrigation). Les défis du futur concernant l’adaptation aux changements climatiques sont également discutés. De tels défis comprennent la diminution des ressources en eau, l’augmentation de la demande en eau pour l’irrigation, la diminution de production et la salinisation des eaux souterraines. L’adaptation et l’atténuation de ces effets sont également discutées, avec des informations utiles pour les gestionnaires des ressources en eau, mais également concernant le développement de méthodes d’irrigation durable à partir des eaux souterraines. Le changement du type d’irrigation en fonction de la saison, tenant compte des ressources en eaux souterraines et de la demande en irrigation, par le développement de méthodes de modélisation prédictive plus précise et complète, et la gestion des installations d’irrigation selon différentes manières sont ainsi considérés, en s’appuyant sur des cas particuliers.

Resumen

El cambio climático afecta no solo a los recursos hídricos, sino también a la demanda de agua para riego. Una gran proporción de la agricultura mundial depende de las aguas subterráneas, especialmente en regiones áridas y semiáridas. En varias regiones, los recursos acuíferos enfrentan al agotamiento. La recarga de agua subterránea ha sido vista como un subproducto del flujo de retorno del riego, y con el cambio climático, el almacenamiento en el acuífero de tal flujo será vital. Se da una revisión general, para una amplia audiencia del trabajo de calentamiento global y recursos de agua subterránea, resumiendo los métodos usados para analizar los escenarios de cambio climático y la influencia de estos cambios predichos sobre los recursos de agua subterránea alrededor del mundo (especialmente el impacto sobre los recursos regionales de aguas subterráneas y los requerimientos del riego. También son discutidos los desafíos futuros de adaptación al cambio climático. Tales desafíos incluyen al agotamiento de los recursos hídricos, crecimientos en la demanda para riego, reducción en el rendimiento de cosechas y salinización del agua subterránea. También se informa sobre la adaptación y la mitigación de estos efectos, incluyendo información útil para los administradores de los recursos hídricos y el desarrollo sustentables de métodos de riego de aguas subterráneas. También se consideran sobre la base de casos particulares, la reprogramación del riego de acuerdo con la estación, la coordinación de los recursos de agua subterránea y la demanda para riego, el desarrollo de métodos de predicción modelísticos más completos y seguros, y la gestión de las instalaciones de riego en diferentes formas.

摘要

气候变化不仅影响水资源, 而且影响灌溉对水的需求。世界农业大部分依赖地下水, 尤其是在干旱和半干旱地区。在某些地区, 含水层面临疏干。地下水补给被视为灌溉回归的副产品。在气候变化背景下, 这部分地下水量尤为重要。对全球变暖和地下水资源进行了综述, 对不同气候变化情景对所预测的世界范围内地下水资源的影响的分析方法进行了总结 (特别是它对区域地下水资源和灌溉需求的影响)。讨论了未来适应气候变化所面临的挑战。这些挑战包括水资源枯竭、灌溉需求增长、减产及地下水盐化。论述了如何适应和减缓这些响应, 包括对水资源管理者有用的信息和可持续地下水灌溉方法的研发。基于具体案例, 考虑了依季节变更灌溉时间、协调地下水资源和灌溉需求、发展更加准确和完整的模拟预测方法, 及管理灌溉设施的不同方法。

Resumo

As alterações climáticas afectam não só os recursos hídricos mas também as exigências de água para rega. Uma grande parte da agricultura mundial depende de água subterrânea, sobretudo em regiões áridas a semi-áridas. Em várias regiões, os recursos aquíferos enfrentam o esgotamento. A recarga de água subterrânea tem sido vista como um sub-produto do fluxo de retorno da rega e, com as alterações climáticas, o armazenamento deste fluxo nos aquíferos será vital. Apresenta-se uma revisão geral dos trabalhos sobre aquecimento global e recursos hídricos subterrâneos, para uma audiência ampla, resumindo os métodos usados para analisar os cenários de alteração climática e a influência das alterações previstas nos recursos hídricos subterrâneos a nível mundial (especialmente o impacte nos recursos hídricos subterrâneos regionais e nas exigências de rega). São também discutidos os desafios futuros de adaptação às alterações climáticas. Estes desafios incluem o esgotamento de recursos hídricos, o aumento das necessidades de água para rega, a redução de rendimento dos campos de cultivo e a salinização da água subterrânea. A adaptação a estes efeitos e a sua mitigação também são reportadas, incluindo informação útil para gestores de recursos hídricos e o desenvolvimento de métodos de rega sustentáveis utilizando águas subterrâneas. A re-calendarização da rega segundo as estações do ano, a coordenação dos recursos de água subterrânea com as necessidades de rega, o desenvolvimento de métodos mais precisos e completos de modelos preditivos e a gestão de infra-estruturas de rega, serão, de diferentes formas, todos considerados, com base em casos particulares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilera H, Murillo JM (2009) The effect of possible climate change on natural groundwater recharge based on a simple model: a study of four karstic aquifers in SE Spain. Environ Geol 57:963–974

    Article  Google Scholar 

  • Ahmad MD, Turral H, Masih I, Giordano M, Masood Z (2007) Water saving technologies: myths and realities revealed in Pakistan’s rice-wheat systems. International Water Management Institute, Colombo, Sri Lanka

    Google Scholar 

  • Allen DM, Mackie DC, Wei M (2004) Groundwater and climate change: a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada. Hydrogeol J 12:270–290

    Article  Google Scholar 

  • Alward RD, Detling JK, Milchunas DG (1999) Grassland vegetation changes and nocturnal global warming. Science 283:229–231

    Article  Google Scholar 

  • Al-Jamal MS, Sammis TW, Mexal JG, Picchioni GA, Zachritz WH (2002) A growth-irrigation scheduling model for wastewater use in forest production. Agric Water Manage 56:57–79

    Article  Google Scholar 

  • Baron JS, Hartman MD, Kittle TGF, Band LE, Ojima DS, Lammers RB (1998) Effects of land cover, water redistribution, and temperature on ecosystem processes in the South Platte Basin. Ecol Appl 8:1037–1051

    Article  Google Scholar 

  • Baron JS, Hartman MD, Band LE, Lammers RB (2000) Sensitivity of a high elevation rocky mountain watershed to altered climate and CO2. Water Resour Res 36:89–99

    Article  Google Scholar 

  • Bond WJ (1998) Effluent irrigation: an environmental challenge for soil science. Aust J Soil Res 36:543–555

    Article  Google Scholar 

  • Bouraoui F, Vachaud G, Li LZX, Le Treut H, Chen T (1999) Evaluation of the impact of climate changes on water storage and groundwater recharge at the watershed scale. Clim Dyn 15:153–161

    Article  Google Scholar 

  • Bredehoeft J (2005) The conceptualization model problem: surprise. Hydrogeol J 13(1):37–46

    Article  Google Scholar 

  • Brouyère S, Carabin G, Dassargues A (2004) Climate change impacts on groundwater resources: modelled deficits in a chalky aquifer, Geer basin, Belgium. Hydrogeol J 12:123–134

    Article  Google Scholar 

  • Burke JJ, Moench MH (2000) Groundwater and society: resources, tensions and opportunities. United Nations Publication ST/ESA/205, UN, New York

  • Causapé J, Quílez D, Aragüés R (2004) Assessment of irrigation and environmental quality at the hydrological basin level II: salt and nitrate loads in irrigation return flows. Agric Water Manage 70:211–228

    Google Scholar 

  • Chen Z, Grasby SE, Osadetz KG (2004) Relation between climate variability and groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada. J Hydrol 290:43–62

    Article  Google Scholar 

  • Chen J, Tang C, Sakura Y, Yu J, Fukushima Y (2005) Nitrate pollution from agriculture in different hydrogeological zones of the regional groundwater flow system in the North China Plain. Hydrogeol J 13:481–492

    Article  Google Scholar 

  • CISEAU (2006) Irrigation induced salinization. Background paper presented at the ‘Electronic conference on Salinization: Extent of Salinization and Strategies for Salt-Affected Land Prevention and Rehabilitation’ 6 February–6 March 2006. www.dgroups.org/groups/fao/salinization-conf/docs/BackgroundPaper.doc. Cited Sept 2008

  • CSIRO (2007) Climate change in Australia. CSIRO and Bureau of Meteorology, CSIRO, Canberra, Australia, 137 pp

  • Döll P (2002) Impact of climate change and variability on irrigation requirements: a global perspective. Clim Change 54:269–293

    Article  Google Scholar 

  • Dominguez-Mariani E, Carrillo-Chavez A, Ortega A, Orozco-Esquivel MT (2003) Wastewater reuse in Valsequillo Agricultural Area, Mexico: environmental impact on groundwater. Water Air Soil Pollut 155:251–267

    Article  Google Scholar 

  • Downing T, Butterfield B, Edmonds D, Knox JW, Moss S, Piper B, Weatherhead EK (2003) CCDeW: climate change and demand for water revisited. Final research report to DEFRA, Stockholm Environment Institute Oxford Office, Oxford, UK

    Google Scholar 

  • Droogers P (2004) Adaptation to climate change to enhance food security and preserve environmental quality: example for southern Sri Lanka. Agric Water Manage 66:15–33

    Article  Google Scholar 

  • Eckhardt K, Ulbrich U (2003) Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J Hydrol 284:244–252

    Article  Google Scholar 

  • FAO (2002) The salt of the earth: hazardous for food production. FAO, Rome. http://www.fao.org/worldfoodsummit/english/newsroom/focus/focus1.htm. Cited Sept 2008

  • FAO (2010) Main findings and short- and medium-term recommendations. FAO, Rome. http://www.fao.org/nr/water/news/clim-change.html. Cited March 2010

  • Favreau G, Cappelaere B, Massuel S, Leblanc M, Boucher M, Boulain N, Leduc C (2009) Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour Res 45, W00A16

  • Fischer G, Tubiello FN, Velthuizen H, Wiberg DA (2007) Climate change impacts on irrigation water requirements: effects of mitigation, 1990–2080. Technol Forecast Soc Change 74:1083–1107

    Article  Google Scholar 

  • Forkutsa I, Sommer R, Shirokova YI, Lamers JPA, Kienzler K, Tischbein B, Martius C, Vlek PLG (2009) Modeling irrigated cotton with shallow groundwater in the Aral Sea Basin of Uzbekistan: II. Soil Salinity Dynam Irrig Sci 27:319–330

    Google Scholar 

  • Foster SSD, Chilton PJ (2003) Groundwater: the processes and global significance of aquifer degradation. Phil Trans R Soc Lond B 358:1957-1972. doi:10.1098/rstb.2003.1380

  • Gartuza-Payán J, Shuttleworth WJ, Encinas D, McNeil DD, Stewart JB, DeBruin H, Watts C (1998) Measurement and modelling evaporation for irrigated crops in northwest Mexico. Hydrol Process 12:1397–1418

    Article  Google Scholar 

  • Gleick PH (1987) Regional hydrologic consequences of increases in atmospheric CO2 and other trace gases. Clim Change 10:137–161

    Article  Google Scholar 

  • Government of India (2005) Master plan for artificial recharge to groundwater in India. Central Groundwater Board, Ministry of Water Resources, New Delhi

    Google Scholar 

  • Gül A, Rida F, Aw-Hassan A, Büyükalaca O (2005) Economic analysis of energy use in groundwater irrigation of dry areas: a case study in Syria. Appl Energ 82:285–299

    Article  Google Scholar 

  • Hiscock K, Tanaka Y (2006) Potential impacts of climate change on groundwater resources: from the high plains of the U.S. to the flatlands of the U.K. National Hydrology Seminar 2006, Irish National Committees, Dublin, pp 19–25

    Google Scholar 

  • Hiscock K, Sparkes R, Hodgson A, Martin JL, Taniguchi M (2008) Evaluation of future climate change impacts in Europe on potential groundwater recharge. Geophys Res Abstr, vol 10. http://www.geophysical-research-abstracts.net/volumes.html. Cited June 2010

  • Hsu K, Wang CH, Chen KC, Chen CT, Ma KW (2007) Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain Taiwan. Hydrogeol J 15:903–913

    Article  Google Scholar 

  • Humphreys E, Meisner C, Gupta R, Timsina J, Beecher HG, Lu TY, Singh Y, Gill MA, Masih I, Guo ZJ, Thompson JA (2005) Water savings in rice-wheat systems. Plant Prod Sci 8(3):242–258

    Article  Google Scholar 

  • IPCC (1996) Climate change 1995: the science of climate change. Contribution of Working Group I to the second assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 9–49

    Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Climate change 2007: climate change impacts, adaptation, and vulnerability—summary for policymakers. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva

  • IPCC-TGCIA (1999) Guidelines on the use of scenario data for climate impact and adaptation assessment, Version 1. Prepared by Carter TR, Hulme M, Lal M, Intergovernmental Panel on Climate Change, Task Group on Scenarios for Climate Impact Assessment, Geneva

  • IWMI (International Water Management Institute) (2010) Banking on groundwater in times of change. IWMI Water Policy Brief 32, IWMI, Colombo, Sri Lanka, 8 pp. doi:10.3910/2009.203

  • Izuka SK (2006) Effects of irrigation, drought, and ground-water withdrawals on ground-water levels in the southern Lihue Basin, Kauai, Hawaii. US Geol Surv Sci Invest Rep 2006-5291, 42 pp

  • JICA (Japan International Cooperation Agency) (1997) The study on water-resource development in Northern and Central Basins in the Syrian Arab Republic: final report. Nippon Koei, Tokyo

    Google Scholar 

  • Jiménez-Martínez J, Skaggs TH, van Genuchten MTh, Candela L (2009) A root zone modelling approach to estimating groundwater recharge from irrigated areas. J Hydrol 367:138–149

    Article  Google Scholar 

  • Jirkama MI, Sykes JF (2007) The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario). J Hydrol 338:237–250

    Article  Google Scholar 

  • Jumaa V, Naji M, Pala M (1999) Review paper on optimizing soil water use in Syria. In: Van Dulmkwden N, Pala M, Studer C, Bieldes CL (eds) Proceedings of workshop on efficient soil water use. Soil Water Use Consortium, Niamey, Niger, 26–30 April 1998; Amman, Jordan, 9–11 May 1999

  • Khan S, Asghar MN, Rana T (2007) Characterizing groundwater dynamics based on impact of pulp and paper mill effluent irrigation and climate variability. Water Air Soil Pollut 185:131–148

    Article  Google Scholar 

  • Knutson KR, Manabe S, Gu D (1997) Simulated ENSO in a global coupled ocean-atmosphere model: multidecadal amplitude and CO2 sensitivity. J Clim 10:138–161

    Article  Google Scholar 

  • Komuscu AU, Erkan A, Oz S (1998) Possible impacts of climate change on soil moisture variability in the southeast Anatolian Development Project (GAP) region: an analysis from an agricultural drought perspective. Clim Change 40:519–545

    Article  Google Scholar 

  • Kundzewicz ZW, Doll P (2007) Will groundwater ease freshwater stress under climate change? Int. Conf. Groundwater and Climate in Africa, Kampala, Uganda, June 2008

  • Leblanc MJ, Favreau G, Massuel S, Tweed SO, Loireau M, Cappelaere B (2008) Land clearance and hydrological change in the Sahel: SW Niger. Glob Planet Change 61:135–150

    Article  Google Scholar 

  • Lee CH, Chen WP, Lee RH (2006) Estimation of groundwater recharge using water balance coupled with base-flow-record estimation and stable-base-flow analysis. Environ Geol 51:73–82

    Article  Google Scholar 

  • Loaiciga HA, Maidment DR, Valdes JB (2000) Climate change impacts in a regional karst aquifer, Texas, USA. J Hydrol 227:173–194

    Article  Google Scholar 

  • Mahlman JD (1997) Uncertainties in projections of human caused climate warming. Science 278:1416–1417

    Article  Google Scholar 

  • McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (2001) Climate change 2001: impacts, adaptation, and vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Nigam A, Gujia B, Bandyopadhya J et al (1998) Fresh water for India’s children and nature. UNICEF–WWF, New Delhi

    Google Scholar 

  • Oenema O, Van Liere L, Schoumans O (2005) Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in The Netherlands. J Hydrol 304:289–301

    Article  Google Scholar 

  • Ojima D, Garcia L, Elgaali E, Miller K, GF KT, Lackett J (1999) Potential climate change impacts on water resources in the Great Plains. J Am Water Resour Assoc 35:1443–1454

    Article  Google Scholar 

  • Oki DS (2004) Trends in streamflow characteristics at long-term gaging stations, Hawaii. US Geol Surv Sci Invest Rep 2004–5080, 120 pp

    Google Scholar 

  • Phukan S, Bhattacharyya KG (2003) Modification of soil quality near a pulp and paper mill. Water Air Soil Pollut 146:319–333

    Article  Google Scholar 

  • Priyantha Ranjan S, Kazama S, Sawamoto M (2006) Effects of climate and land use changes on groundwater resources in coastal aquifers. J Environ Manage 80:25–35

    Article  Google Scholar 

  • Rosenzweig C, Hillel D (1998) Climate change and the global harvest: potential impacts of the greenhouse effect on agriculture. Oxford University Press, Oxford

  • Scibek J, Allen DM (2006) Comparing modelled responses of two high-permeability, unconfined aquifers to predicted climate change. Glob Planet Change 50:50–62

    Article  Google Scholar 

  • Scibek J, Allen DM, Cannon AJ, Whitfield PH (2007) Groundwater–surface water interaction under scenarios of climate change using a high-resolution transient groundwater model. J Hydrol 333:165–181

    Article  Google Scholar 

  • Serrat-Capdevila A, Valdés JB, Pérez JG, Baird K, Mata LJ, Maddock T (2007) Modeling climate change impacts – and uncertainty – on the hydrology of a riparian system: The San Pedro Basin (Arizona/Sonora). J Hydrol 347:48–66

    Article  Google Scholar 

  • Shah T (2009) Climate change and roundwater: India’s opportunities for mitigation and adaptation. Environ Res Lett 4:035005

    Article  Google Scholar 

  • Shah T, Burke J, Villholth K et al (2007) Groundwater: a global assessment of scale and significance Water for Food, Water for Life: a comprehensive assessment of water management in agriculture. IWMI, Colombo, Sri Lanke, pp 395–423

  • Shiklomanov IA (ed) (1997) Comprehensive assessment of the freshwater resources of the world: assessment of water resources and water availability in the world. World Meteorological Organization, Geneva

  • SMAAR (Syrian Ministry of Agriculture and Agrarian Reform) (1999) The annual agricultural statistical abstract 1996. Department of Planning and Statistics, Division of Agricultural Statistics Computer Center, Damascus

    Google Scholar 

  • Stigter TY, Carvalho Dill AMM, Ribeiro L, Reis E (2006) Impact of the shift from groundwater to surface water irrigation on aquifer dynamics and hydrochemistry in a semi-arid region in the south of Portugal. Agric Water Manage 85:121–132

    Article  Google Scholar 

  • Thomas A (2008) Agricultural irrigation demand under present and future climate scenarios in China. Glob Planet Change 60:306–326

    Article  Google Scholar 

  • Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–697

    Article  Google Scholar 

  • Tubiello FN, Donatelli M, Rosenzweig C, Stockle CO (2000) Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. Eur J Agron 13(2–3):179–189

    Article  Google Scholar 

  • Tuong TP, Bouman BAM, Mortimer M (2005) More rice, less water: integrated approaches for increasing water productivity in irrigated rice based systems in Asia. Plant Prod Sci 8(3):231–241

    Article  Google Scholar 

  • Turral H, Svendsen M, Faures JM (2009) Investing in irrigation: reviewing the past and looking to the future. Agric Water Manage 97(4):551–560. doi:10.1016/j.agwat.2009.07.012

    Google Scholar 

  • UNESCO (United Nations Educational Scientific and Cultural Organization) (2008) Groundwater resources assessment under the pressures of humanity and climate change (GRAPHIC). http://www.unesco.org/water/ihp/graphic/ . Cited 19 May 2010

  • USDA (2008) The Effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States. U.S. Climate Change Science Program Synthesis and Assessment Product 4.3. USDA, Washington, DC. http://www.climatescience.gov. Cited March 2010

  • Van Hofwegen P, Svendsen M (2000) A vision of water for food and rural development. World Water Forum, The Hague

    Google Scholar 

  • Wakil M (1993) Analysis of future water-needs of different sectors in Syria. Water Int 18:18–22

    Article  Google Scholar 

  • Wilson SG, Hunt BG (1997) Impact of greenhouse warming on El Niño/Southern Oscillation behaviour in a high resolution coupled global climatic model. Report to Environment Australia. CSIRO Division of Atmospheric Research, Melbourne, Australia

    Google Scholar 

  • Yang YH, Watanabe M, Tang CY, Sakura Y, Hayashi S (2002) Groundwater table and recharge changes in the piedmont region of Taihang Mountain in Gaocheng City and its relation to agricultural water use. Water SA 28:171–178

    Google Scholar 

  • Yang YH, Watanabe M, Zhang XY, Zhang JQ, Wang QX, Hayashi S (2006) Optimizing irrigation management for wheat to reduce groundwater depletion in the piedmont region of the Taihang Mountains in the North China Plain. Agric Water Manage 82:25–44

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Zwahlen, F., Wang, Y. et al. Impact of climate change on irrigation requirements in terms of groundwater resources. Hydrogeol J 18, 1571–1582 (2010). https://doi.org/10.1007/s10040-010-0627-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-010-0627-8

Keywords

Navigation