Skip to main content
Log in

A new DEM model to simulate the abrasion behavior of irregularly-shaped coarse granular aggregates

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Railway ballast usually experiences continuous abrasion or breakage as subjected to repeated train loads. A novel 2D abrasion model is established based on the Discrete Element Method to capture the abrasion behavior of ballast with irregular shapes. A force-based failure criterion allowing for the Weibull distribution and size scaling law of strength is developed for abrasion recognition. In current model, ballast can abrade in either crushing or shearing mode, with each of them corresponds to a different fragment generation method after corner abrasion. A series of Los Angeles Abrasion (LAA) test simulations are conducted and the LAA loss is calibrated against the existing experimental data. The abrasion model and the calibrated strength parameters are further validated by the biaxial compression simulations. The evolutions of particle size and morphology during LAA test are also analyzed in terms of sphericity variation and ballast breakage index (BBI). The average sphericity and the BBI of ballast aggregates increase at a decreasing rate as abrasion aggravates. Using the calibrated model, the influence of particle morphology on the abrasion behavior of ballast is also investigated. It is found that particles with lower sphericities exhibit greater LAA loss and BBI value during LAA test. The proposed model provides an efficient and robust method to study the abrasion behavior of ballast aggregate involving with irregular shaped particles.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Indraratna, B., Salim, W., Rujikiatkamjorn, C.: Advanced Rail Geotechnology-Ballasted Track. Taylor and Francis Ltd, Abingdon (2011)

    Book  Google Scholar 

  2. Lim, W.L., McDowell, G.R., Collop, A.C.: The application of Weibull statistics to the strength of railway ballast. Granul. Matter. 6(4), 229–237 (2004). https://doi.org/10.1007/s10035-004-0180-z

    Article  Google Scholar 

  3. Al-Saoudi, N.K.S., Hassan, K.H.: Evaluation of indirect tensile strength of track ballast using Weibull statistics. Geotech. Geol. Eng. 30(5), 1097–1102 (2012). https://doi.org/10.1007/s10706-012-9525-2

    Article  Google Scholar 

  4. Koohmishi, M., Palassi, M.: Evaluation of the strength of railway ballast using point load test for various size fractions and particle shapes. Rock Mech. Rock Eng. 49(7), 2655–2664 (2016). https://doi.org/10.1007/s00603-016-0914-3

    Article  Google Scholar 

  5. Indraratna, B., Lackenby, J., Christie, D.: Effect of confining pressure on the degradation of ballast under cyclic loading. Géotechnique 55(4), 325–328 (2005). https://doi.org/10.1680/geot.2005.55.4.325

    Article  Google Scholar 

  6. Indraratna, B., Sun, Y., Nimbalkar, S.: Laboratory assessment of the role of particle size distribution on the deformation and degradation of ballast under cyclic loading. J. Geotech. Geoenviron. Eng. 142(7), 04016016 (2016). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001463

    Article  Google Scholar 

  7. Nimbalkar, S., Indraratna, B., Dash, S.K., Christie, D.: Improved performance of railway ballast under impact loads using shock mats. J. Geotech. Geoenviron. Eng. 138(3), 281–294 (2012). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000598

    Article  Google Scholar 

  8. Koohmishi, M., Palassi, M.: Effect of particle size distribution and subgrade condition on degradation of railway ballast under impact loads. Granul. Matter. 19(3), 63 (2017). https://doi.org/10.1007/s10035-017-0747-0

    Article  Google Scholar 

  9. Deiros Quintanilla, I., Combe, G., Emeriault, F., Voivret, C., Ferellec, J.F.: X-ray CT analysis of the evolution of ballast grain morphology along a micro-Deval test: key role of the asperity scale. Granul. Matter. 21(2), 30 (2019). https://doi.org/10.1007/s10035-019-0881-y

    Article  Google Scholar 

  10. Guo, Y., Markine, V., Qiang, W., Zhang, H., Jing, G.: Effects of crumb rubber size and percentage on degradation reduction of railway ballast. Constr. Build. Mater. 212, 210–224 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.315

    Article  Google Scholar 

  11. Guo, Y., Markine, V., Song, J., Jing, G.: Ballast degradation: effect of particle size and shape using Los Angeles Abrasion test and image analysis. Constr. Build. Mater. 169, 414–424 (2018). https://doi.org/10.1016/j.conbuildmat.2018.02.170

    Article  Google Scholar 

  12. Qian, Y., Boler, H., Moaveni, M., Tutumluer, E., Hashash, Y.M.A., Ghaboussi, J.: Degradation-related changes in ballast gradation and aggregate particle morphology. J. Geotech. Geoenviron. Eng. 143(8), 04017032 (2017). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001706

    Article  Google Scholar 

  13. Cundall, P., Strack, O.: Discrete numerical model for granular assemblies. Int. J. Rock Mech. Min. Sci. Geomech. Abstracts 16(4), 77 (1979). https://doi.org/10.1016/0148-9062(79)91211-7

    Article  Google Scholar 

  14. Lobo-Guerrero, S., Vallejo, L.E.: Discrete element method analysis of Railtrack ballast degradation during cyclic loading. Granul. Matter. 8(3–4), 195–204 (2006). https://doi.org/10.1007/s10035-006-0006-2

    Article  Google Scholar 

  15. Abadi, T., Le Pen, L., Zervos, A., Powrie, W.: Improving the performance of railway tracks through ballast interventions. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Trans. 232(2), 337–355 (2018). https://doi.org/10.1177/0954409716671545

    Article  Google Scholar 

  16. Afshar, T., Disfani, M.M., Arulrajah, A., Narsilio, G.A., Emam, S.: Impact of particle shape on breakage of recycled construction and demolition aggregates. Powder Technol. 308, 1–12 (2017). https://doi.org/10.1016/j.powtec.2016.11.043

    Article  Google Scholar 

  17. Zhao, B., Wang, J.: 3D quantitative shape analysis on form, roundness, and compactness with \(\mu \)CT. Powder Technol. 291, 262–275 (2016). https://doi.org/10.1016/j.powtec.2015.12.029

    Article  Google Scholar 

  18. Bono, J.P.D., McDowell, G.R.: DEM of triaxial tests on crushable sand. Granul. Matter. 16(4), 551–562 (2014). https://doi.org/10.1007/s10035-014-0500-x

    Article  Google Scholar 

  19. Bono, J.P.D., McDowell, G.R.: Investigating the effects of particle shape on normal compression and overconsolidation using DEM. Granul. Matter. 18(3), 55 (2016). https://doi.org/10.1007/s10035-016-0605-5

    Article  Google Scholar 

  20. Lim, W.L., McDowell, G.R.: Discrete element modelling of railway ballast. Granul. Matter. 7(1), 19–29 (2005). https://doi.org/10.1007/s10035-004-0189-3

    Article  MATH  Google Scholar 

  21. Yan, Y., Zhao, J., Ji, S.: Discrete element analysis of breakage of irregularly shaped railway ballast. Geomech. Geoeng. 10(1), 1–9 (2015). https://doi.org/10.1080/17486025.2014.933891

    Article  Google Scholar 

  22. Zhang, X., Zhao, C., Zhai, W.: DEM analysis of ballast breakage under train loads and its effect on mechanical behaviour of railway track. In: Li, X., Feng, Y., Mustoe, G. (eds.) Proceedings of the 7th International Conference on Discrete Element Methods, Springer Proceedings in Physics, 0930-8989, vol. 188, pp. 1323–1333. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-1926-5_136

  23. Hossain, Z., Indraratna, B., Darve, F., Thakur, P.K.: DEM analysis of angular ballast breakage under cyclic loading. Geomech. Geoeng. 2(3), 175–181 (2007). https://doi.org/10.1080/17486020701474962

    Article  Google Scholar 

  24. McDowell, G.R., Li, H.: Discrete element modelling of scaled railway ballast under triaxial conditions. Granul. Matter. 18(3), 66 (2016). https://doi.org/10.1007/s10035-016-0663-8

    Article  Google Scholar 

  25. Lu, M., McDowell, G.R.: Discrete element modelling of ballast abrasion. Géotechnique 56(9), 651–655 (2006). https://doi.org/10.1680/geot.2006.56.9.651

    Article  Google Scholar 

  26. Taghavi, R.: Automatic clump generation based on mid-surface. In: Continuum and Distinct Element Numerical Modeling in Geomechanics-2011, vol. 14-02, pp. 14–02. ITASCA Consulting Group, Melbourne (2011)

  27. Zeng, Y.W., Jin, L., Du, X., Gao, R.: Refined modeling and movement characteristics analyses of irregularly shaped particles. Int. J. Numer. Anal. Methods Geomech. 39(4), 388–408 (2015). https://doi.org/10.1002/nag.2313

    Article  Google Scholar 

  28. Liu, Y., Gao, R., Chen, J.: Exploring the influence of sphericity on the mechanical behaviors of ballast particles subjected to direct shear. Granul. Matter 21(4), 1–17 (2019). https://doi.org/10.1007/s10035-019-0943-1

    Article  Google Scholar 

  29. Chen, J., Gao, R., Liu, Y.: Numerical study of particle morphology effect on the angle of repose for coarse assemblies using DEM. Adv. Mater. Sci. Eng. 2019, 1–15 (2019). https://doi.org/10.1155/2019/8095267

    Article  Google Scholar 

  30. Ben-Nun, O., Einav, I.: The role of self-organization during confined comminution of granular materials. Philos. Trans. R. Soc. A 368(1910), 231–247 (2010). https://doi.org/10.1098/rsta.2009.0205

    Article  Google Scholar 

  31. Ciantia, M.O., Arroyo, M., Calvetti, F., Gens, A.: An approach to enhance efficiency of DEM modelling of soils with crushable grains. Géotechnique 65(2), 91–110 (2015). https://doi.org/10.1680/geot.13.P.218

    Article  Google Scholar 

  32. McDowell, G.R., Bono, J.P.D.: On the micro mechanics of one-dimensional normal compression. Géotechnique 63(11), 895–908 (2013). https://doi.org/10.1680/geot.12.P.041

    Article  Google Scholar 

  33. Zhou, W., Yang, L., Ma, G., Chang, X., Lai, Z., Xu, K.: DEM analysis of the size effects on the behavior of crushable granular materials. Granul. Matter 18(3), 64 (2016). https://doi.org/10.1007/s10035-016-0656-7

    Article  Google Scholar 

  34. McDowell, G.R., Lim, W.L., Collop, A.C., Armitage, R., Thom, N.H.: Comparison of ballast index tests for railway trackbeds. Proc. Inst. Civ. Eng. Geotech. Eng. 157(3), 151–161 (2004). https://doi.org/10.1680/geng.2004.157.3.151

    Article  Google Scholar 

  35. Ovalle, C., Frossard, E., Dano, C., Hu, W., Maiolino, S., Hicher, P.Y.: The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data. Acta Mech. 225(8), 2199–2216 (2014). https://doi.org/10.1007/s00707-014-1127-z

    Article  MATH  Google Scholar 

  36. Xiao, Y., Meng, M., Daouadji, A., Chen, Q., Wu, Z., Jiang, X.: Effects of particle size on crushing and deformation behaviors of rockfill materials. Geosci. Front. (2018). https://doi.org/10.1016/j.gsf.2018.10.010

    Article  Google Scholar 

  37. Xu, Y., Gao, L., Yang, G.T., Hou, B.W., Yin, H.: Research of wear mechanism of railway ballast based on crushable discrete element. J. China Railw. Soc. 41(2), 124–129 (2019)

    Google Scholar 

  38. Itasca: PFC (Particle Flow Code in 2 and 3 Dimensions), Version 5.0 [User’s Manual]. Itasca Consulting Group, Minneapolis (2014)

  39. Zheng, J., Hryciw, R.D.: Traditional soil particle sphericity, roundness and surface roughness by computational geometry. Géotechnique 65(6), 494–506 (2015). https://doi.org/10.1680/geot.14.P.192

    Article  Google Scholar 

  40. Rodriguez, J., Johansson, J., Edeskär, T.: Particle Shape Determination by Two-Dimensional Image Analysis in Geotechnical Engineering. In: Nordic Geotechnical Meeting (2012)

  41. Ngo, T., Indraratna, B.: Analysis of deformation and degradation of fouled ballast: experimental testing and DEM modeling. Int. J. Geomech. 20(9), 06020020 (2020). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001783

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (NSFC) (Grant Nos. 51878521 and 51178358). The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Gao, R. & Chen, J. A new DEM model to simulate the abrasion behavior of irregularly-shaped coarse granular aggregates. Granular Matter 23, 61 (2021). https://doi.org/10.1007/s10035-021-01130-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01130-5

Keywords

Navigation