Skip to main content
Log in

Effect of particle size distribution and subgrade condition on degradation of railway ballast under impact loads

  • Original Article
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Ballasted rail tracks are generally exposed to impact loads generated from abnormal wheel-rail interface as well as sudden variations in support rigidity. These induced impact loads can lead to railway ballast degradation by attrition of the angular edges of the aggregate and breakage of single particle into finer fragments. In the present study, the degradation of ballast particles under impact loads is investigated by considering various fouling and breakage indices. For this purpose, impact test is conducted on ballast aggregates obtained from different quarries (rock types of basalt, marl, dolomite and trachyte) by varying the gradation of ballast aggregates, impact energy and subgrade type. According to the obtained results, the degradation of ballast specimens under impact loading is less for more broadly-graded ballast. In addition, providing a flexible subgrade as support condition leads to reduction in ballast degradation resulted from diminishing impact energy. Furthermore, the axial strain of ballast specimens reduces with decrease in degradation of aggregates under repeated impact loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Profillidis, V.A.: Railway Management and Engineering, 3rd edn. Ashgate Publishing Limited, Hampshire (2006)

    Google Scholar 

  2. Selig, E.T., Waters, J.M.: Track Geotechnology and Substructure Management. Thomas Telford, London (1994)

    Book  Google Scholar 

  3. Indraratna, B., Nimbalkar, S., Christie, D.: The performance of rail track incorporating the effects of ballast breakage, confining pressure and geosynthetic reinforcement. In: 8th International Conference on the Bearing Capacity of Roads, Railways, and Airfields, Taylor and Francis Group, London, pp. 5–24 (2009)

  4. Indraratna, B., Salim, W., Rujikiatkamjorn, C.: Advanced Rail Geotechnology: Ballasted Track. Taylor and Francis Group, Rotterdam (2011)

    Google Scholar 

  5. Lim, W.L., McDowell, G.R., Collop, A.C.: The application of Weibull statistics to the strength of railway ballast. Granul. Matter 6, 229–237 (2004). doi:10.1007/s10035-004-0180-z

    Google Scholar 

  6. Al-Saoudi, N.K.S., Hassan, K.H.: Evaluation of indirect tensile strength of track ballast using weibull statistics. Geotech. Geol. Eng. 30(5), 1097–1102 (2012). doi:10.1007/s10706-012-9525-2

    Article  Google Scholar 

  7. Koohmishi, M., Palassi, M.: Evaluation of the strength of railway ballast using point load test for various size fractions and particle shapes. Rock Mech. Rock Eng. 49(7), 2655–2664 (2016). doi:10.1007/s00603-016-0914-3

    Article  ADS  Google Scholar 

  8. Tolppanen, P., Stephansson, O., Stenlid, L.: 3-D degradation analysis of railroad ballast. Bull. Eng. Geol. Environ. 61(1), 35–42 (2002). doi:10.1007/s100640100140

    Article  Google Scholar 

  9. Wnek, M.A., Tutumluer, E., Moaveni, M., Gehringer, E.: Investigation of aggregate properties influencing railroad ballast performance. Transport Res Rec 2374, Transportation Research Board, Washington, DC, pp. 180–189 (2013). doi:10.3141/2374-21

  10. Qian, Y., Boler, H., Moaveni, M., Tutumluer, E., Hashash, Y.M.A., Ghaboussi, J.: Characterizing ballast degradation through Los Angeles abrasion test and image analysis. Transport Res Rec 2448, Transportation Research Board, Washington, DC, pp. 142–151 (2014). doi:10.3141/2448-17

  11. Okonta, F.N.: Relationships between abrasion index and shape properties of progressively abraded dolerite railway ballasts. Rock Mech. Rock Eng. 47(4), 1335–1344 (2014). doi:10.1007/s00603-013-0474-8

    Article  ADS  Google Scholar 

  12. Sun, Q.D., Indraratna, B., Nimbalkar, S.: Deformation and degradation mechanisms of railway ballast under high frequency cyclic loading. J. Geotech. Geoenviron. Eng. 142(1), 1–12 (2015). doi:10.1061/(ASCE)GT.1943-5606.0001375

    Google Scholar 

  13. Indraratna, B., Sun, Y., Nimbalkar, S.: Laboratory assessment of the role of particle size distribution on the deformation and degradation of ballast under cyclic loading. J. Geotech. Geoenviron. Eng. 142(7), 04016016 (2016). doi:10.1061/(ASCE)GT.1943-5606.0001463

  14. Li, D., Davis, D.: Transition of railroad bridge approaches. J. Geotech. Geoenviron. Eng. 131(11), 1392–1398 (2005). doi:10.1061/(ASCE)1090-0241(2005)131:11(1392)

    Article  Google Scholar 

  15. Remennikov, A.M., Kaewunruen, S.: A review on loading conditions for railway track structures due to wheel and rail vertical interactions. Struct. Control Health 15(2), 207–234 (2008). doi:10.1002/stc.227

    Article  Google Scholar 

  16. Sañudo, R., Dell’Olio, L., Casado, J.A., Carrascal, I.A., Diego, S.: Track transitions in railways: a review. Constr. Build. Mater. 112, 140–157 (2016). doi:10.1016/j.conbuildmat.2016.02.084

    Article  Google Scholar 

  17. Kaewunruen, S., Remennikov, A.M.: Dynamic crack propagations in prestressed concrete sleeper in railway track systems subjected to severe impact loads. J. Struct. Eng. 136(6), 749–754 (2010). doi:10.1061/(ASCE)ST.1943-541X.0000152

  18. Nimbalkar, S., Indraratna, B., Dash, S.K., Christie, D.: Improved performance of railway ballast under impact loads using shock mats. J. Geotech. Geoenviron. Eng. 138(3), 281–294 (2012). doi:10.1061/(ASCE)GT.1943-5606.0000598

    Article  Google Scholar 

  19. Aikawa, A.: Dynamic characterization of a ballast layer subject to traffic impact loads using three-dimensional sensing stones and a special sensing sleeper. Constr. Build. Mater. 92(5584), 23–30 (2015). doi:10.1016/j.conbuildmat.2014.06.005

    Article  Google Scholar 

  20. Nimbalkar, S., Indraratna, B.: Improved performance of ballasted rail track using geosynthetics and rubber shockmat. J. Geotech. Geoenviron. Eng. 142(8), 1–13 (2016). doi:10.1061/(ASCE)GT.1943-5606.0001491

    Article  Google Scholar 

  21. ASTM.: Standard test method for determination of the point load strength index of rock. Am. Soc. Test Mater. ASTM D 5731-02 (2002)

  22. European Standard.: Tests for mechanical and physical properties of aggregates—Part 2: Methods for the determination of resistance to fragmentation. BS EN 1097-2 (2010)

  23. Hardin, B.O.: Crushing of soil particles. J. Geotech. Eng. 111(10), 1177–1192 (1985)

  24. Einav, I.: Breakage mechanics, I: Theory. J. Mech. Phys. Solid 55(6), 1274–1297 (2007). doi:10.1016/j.jmps.2006.11.003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Sammis, C., King, G., Biegel, R.: The kinematics of gouge deformations. Pure Appl. Geophys. 125(5), 777–812 (1987). doi:10.1007/BF00878033

    Article  ADS  Google Scholar 

  26. AREMA.: Manual for railway engineering, Volume 1: Track, Ch. 1: Roadway and ballast. American Railway Engineering and Maintenance-of-Way Association, Washington, DC (2010)

  27. Indraratna, B., Khabbaz, H., Salim, W., Christie, D.: Geotechnical properties of ballast and the role of geosynthetics in rail track stabilization. J. Ground Improv. 10(3), 91–101 (2006). doi:10.1680/grim.2006.10.3.91

    Article  Google Scholar 

  28. Nalsund, R.: Effect of grading on degradation of crushed-rock railway ballast and on permanent axial deformation. Transport Res Rec 2154, Transportation Research Board, Washington, DC, pp. 149–155 (2010). doi:10.3141/2154-15

  29. Hossain, Z., Indraratna, B., Darve, F., Thakur, P.K.: DEM analysis of angular ballast breakage under cyclic loading. Geomech. Geoeng. 2(3), 175–181 (2007). doi:10.1080/17486020701474962

    Article  Google Scholar 

  30. Lackenby, J., Indraratna, B., McDowell, G., Christie, D.: Effect of confining pressure on ballast degradation and deformation under cyclic triaxial loading. Geotechnique 57(6), 527–536 (2007). doi:10.1680/geot.2007.57.6.527

    Article  Google Scholar 

  31. Indraratna, B., Khabbaz, H., Salim, W., Lackenby, J., Christie, D.: Ballast characteristics and the effect of geosynthetics on rail track deformation. In: Proceedings of the International Conference on Geosynthetics and Geoenvironmental Engineering, Quest Publications, Mumbai, India, pp. 3–13 (2004)

  32. Bian, X., Huang, H., Tutumluer, E., Gao, Y.: Critical particle size and ballast gradation studied by discrete element modeling. Transp. Geotech. 6, 38–44 (2016). doi:10.1016/j.trgeo.2016.01.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massoud Palassi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koohmishi, M., Palassi, M. Effect of particle size distribution and subgrade condition on degradation of railway ballast under impact loads. Granular Matter 19, 63 (2017). https://doi.org/10.1007/s10035-017-0747-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0747-0

Keywords

Navigation