Skip to main content
Log in

A hypo-plastic approach for evaluating railway ballast degradation

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Repetitive or cyclic rail loading deteriorates the engineering properties of the railway ballast by particle crushing and rearrangement. Most of the classical elasto-plastic models are unable to predict such ballast degradation despite successfully predicting the overall load–deformation behavior during cyclic densification. In this context, the present study delivers a novel hypo-plastic modeling approach coupled with breakage mechanics theory to bridge the gap of the conventional models. The hypo-plastic approach enables to predict the nonlinear load–deformation response of ballast-type granular materials for both monotonic and cyclic loading conditions, while circumventing the requirement of notional yield condition to predict the inelastic behavior. Breakage mechanics theory, on the other hand, establishes the links between particle comminution and the macroscopic deformation. The novelty of the proposed approach is threefold. Firstly, unlike the conventional hypo-plastic approaches, the development of the proposed model is within the continuum thermodynamics framework. Secondly, the model requires less number of physically identifiable parameters as compared to that of earlier models employed for assessing the particle breakage under cyclic loading. Third and finally, the numerical implementation of the model as a user-defined material is simple for solving boundary value problems. Under the compressive deformation regime, the model prediction of the ballast degradation along with the cyclic densification response agrees reasonably well with the experimental results found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(Experiments from Indraratna et al. [30].)

Fig. 5
Fig. 6
Fig. 7

(Experiments from Indraratna et al. [30])

Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Al Hattamleh OH, Al-Deeky HH, Akhtar MN (2013) The consequence of particle crushing in engineering properties of granular materials. Int J Geosci 4:1055–1060. doi:10.4236/ijg.2013.47099

    Article  Google Scholar 

  2. Anderson WF, Fair P (2008) Behavior of railroad ballast under monotonic and cyclic loading. J Geotech Geoenviron Eng 134:316–327. doi:10.1061/(ASCE)1090-0241(2008)134:3(316)

    Article  Google Scholar 

  3. Åström JA, Herrmann HJ (1998) Fragmentation of grains in a two-dimensional packing. Eur Phys J B 5:551–554. doi:10.1007/s100510050476

    Article  Google Scholar 

  4. Aursudkij B, McDowell GR, Collop AC (2009) Cyclic loading of railway ballast under triaxial conditions and in a railway test facility. Granul Matter 11:391–401. doi:10.1007/s10035-009-0144-4

    Article  Google Scholar 

  5. Baud P, Klein E, Wong T (2004) Compaction localization in porous sandstones: spatial evolution of damage and acoustic emission activity. J Struct Geol 26:603–624. doi:10.1016/j.jsg.2003.09.002

    Article  Google Scholar 

  6. Bauer E (2009) Hypoplastic modelling of moisture-sensitive weathered rockfill materials. Acta Geotech 4:261–272. doi:10.1007/s11440-009-0099-y

    Article  Google Scholar 

  7. Bauer E, Wu W (1993) A hypoplastic model for granular soils under cyclic loading. In: Kolymbas D (ed) Mod. approaches to plast. Elsevier, Amsterdam, pp 247–258

    Chapter  Google Scholar 

  8. Bazazzadeh H, Asakereh A, Kalantary F (2011) An investigation on the effect of particle breakage on rockfill constitutive parameters. Electron J Geotech Eng 15:847–864

    Google Scholar 

  9. Ben-Nun O, Einav I, Tordesillas A (2010) Force attractor in confined comminution of granular materials. Phys Rev Lett 104:10–13. doi:10.1103/PhysRevLett.104.108001

    Article  Google Scholar 

  10. Buscarnera G, Einav I (2012) The yielding of brittle unsaturated granular soils. Géotechnique 62:147–160. doi:10.1680/geot.10.P.118

    Article  Google Scholar 

  11. Cecconi M, DeSimone A, Tamagnini C, Viggiani GMB (2002) A constitutive model for granular materials with grain crushing and its application to a pyroclastic soil. Int J Numer Anal Methods Geomech 26:1531–1560. doi:10.1002/nag.257

    Article  MATH  Google Scholar 

  12. Chambon R, Desrues J, Hammad W, Charlier R (1994) CLoE, a new rate-type constitutive model for geomaterials theoretical basis and implementation. Int J Numer Anal Methods Geomech 18:253–278. doi:10.1002/nag.1610180404

    Article  MATH  Google Scholar 

  13. Cheng YP, Bolton MD, Nakata Y (2004) Crushing and plastic deformation of soils simulated using DEM. Géotechnique 54:131–141. doi:10.1680/geot.2004.54.2.131

    Article  Google Scholar 

  14. Cil MB, Buscarnera G (2016) DEM assessment of scaling laws capturing the grain size dependence of yielding in granular soils. Granul Matter 18:36. doi:10.1007/s10035-016-0638-9

    Article  Google Scholar 

  15. Dafalias YF (1986) Bounding surface plasticity. I: mathematical foundation and hypoplasticity. J Eng Mech 112:966–987. doi:10.1061/(ASCE)0733-9399(1986)112:9(966)

    Article  Google Scholar 

  16. Dafalias YF, Popov EP (1975) A model of nonlinearly hardening materials for complex loading. Acta Mech 21:173–192. doi:10.1007/BF01181053

    Article  MATH  Google Scholar 

  17. Daouadji A, Hicher P (2009) An enhanced constitutive model for crushable granular materials. Int J Numer Anal Methods Geomech 34:555–580. doi:10.1002/nag.815

    MATH  Google Scholar 

  18. Das A (2012) A theoretical study of grain crushing induced compaction localization in porous sandstones. The University of Sydney, PhD Thesis

  19. Das A, Nguyen GD, Einav I (2011) Compaction bands due to grain crushing in porous rocks: a theoretical approach based on breakage mechanics. J Geophys Res 116:B08203. doi:10.1029/2011JB008265

    Article  Google Scholar 

  20. Einav I (2007) Breakage mechanics—part I: theory. J Mech Phys Solids 55:1274–1297. doi:10.1016/j.jmps.2006.11.003

    Article  MathSciNet  MATH  Google Scholar 

  21. Einav I (2007) Breakage mechanics—part II: modelling granular materials. J Mech Phys Solids 55:1298–1320. doi:10.1016/j.jmps.2006.11.004

    Article  MathSciNet  MATH  Google Scholar 

  22. Einav I (2012) The unification of hypo-plastic and elasto-plastic theories. Int J Solids Struct 49:1305–1315. doi:10.1016/j.ijsolstr.2012.02.003

    Article  Google Scholar 

  23. Einav I, Valdes JR (2008) On comminution and yield in brittle granular mixtures. J Mech Phys Solids 56:2136–2148. doi:10.1016/j.jmps.2008.02.002

    Article  MATH  Google Scholar 

  24. Hardin BO (1985) Crushing of soil particles. J Geotech Eng 111:1177. doi:10.1061/(ASCE)0733-9410(1985)111:10(1177)

    Article  Google Scholar 

  25. Houlsby GT, Puzrin AM (2000) A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int J Plast 16:1017–1047. doi:10.1016/S0749-6419(99)00073-X

    Article  MATH  Google Scholar 

  26. Indraratna B, Salim W (2002) Modelling of particle breakage of coarse aggregates incorporating strength and dilatancy. Proc ICE Geotech Eng 155:243–252. doi:10.1680/geng.2002.155.4.243

    Article  Google Scholar 

  27. Indraratna B, Ionescu D, Christie HD (1998) shear behavior of railway ballast based on large-scale triaxial tests. J Geotech Geoenviron Eng 124:439–449. doi:10.1061/(ASCE)1090-0241(1998)124:5(439)

    Article  Google Scholar 

  28. Indraratna B, Vinod JS, Lackenby J (2009) Influence of particle breakage on the resilient modulus of railway ballast. Géotechnique 59:643–646. doi:10.1680/geot.2008.T.005

    Article  Google Scholar 

  29. Indraratna B, Thakur PK, Vinod JS (2010) Experimental and numerical study of railway ballast behavior under cyclic loading. Int J Geomech 10:136–144. doi:10.1061/(ASCE)GM.1943-5622.0000055

    Article  Google Scholar 

  30. Indraratna B, Salim W, Rujikiatkamjorn C (2011) Advanced rail geotechnology—ballasted track. CRC Press, Balkema

    Google Scholar 

  31. Indraratna B, Thakur PK, Vinod JS, Salim W (2012) Semiempirical cyclic densification model for ballast incorporating particle breakage. Int J Geomech 12:260–271. doi:10.1061/(ASCE)GM.1943-5622.0000135

    Article  Google Scholar 

  32. Janardhanam R, Desai CS (1983) Three-dimensional testing and modeling of ballast. J Geotech Eng 109:783–796. doi:10.1061/(ASCE)0733-9410(1983)109:6(783)

    Article  Google Scholar 

  33. Kikumoto M, Muir Wood D, Russell A (2010) Particle crushing and deformation behaviour. Soils Found 50:547–563. doi:10.3208/sandf.50.547

    Article  Google Scholar 

  34. Kolbuszewski JJ, Frederick MR (1963) The significance of particle shape and size on the mechanical behavior of granular materials. In: Proceedings of European conference on the soil mechanics and foundation engineering, pp 253–263

  35. Krieg RD (1975) A practical two surface plasticity theory. J Appl Mech 42:641. doi:10.1115/1.3423656

    Article  Google Scholar 

  36. Lackenby J, Indraratna B, McDowell GR, Christie D (2007) Effect of confining pressure on ballast degradation and deformation under cyclic triaxial loading. Géotechnique 57:527–536. doi:10.1680/geot.2007.57.6.527

    Article  Google Scholar 

  37. Lim WL, McDowell GR (2005) Discrete element modelling of railway ballast. Granul Matter 7:19–29. doi:10.1007/s10035-004-0189-3

    Article  MATH  Google Scholar 

  38. Marachi ND, Chan CK, Seed HB (1972) Evaluation of properties of rockfill materials. J Soil Mech Found Div 98:95–114

    Google Scholar 

  39. Nguyen GD, Einav I (2009) The energetics of cataclasis based on breakage mechanics. Pure appl Geophys 166:1693–1724. doi:10.1007/s00024-009-0518-x

    Article  Google Scholar 

  40. Nguyen GD, Einav I (2010) Nonlocal regularisation of a model based on breakage mechanics for granular materials. Int J Solids Struct 47:1350–1360. doi:10.1016/j.ijsolstr.2010.01.020

    Article  MATH  Google Scholar 

  41. Niemunis A (1993) Hypoplasticity vs. elastoplasticity, selected topics. In: Kolymbas D (ed) Mod. approaches to plast. Elsevier, Amsterdam, pp 277–307

    Chapter  Google Scholar 

  42. Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohesive-frict Mater 2:279–299. doi:10.1002/(SICI)1099-1484(199710)2:4<279:AID-CFM29>3.0.CO;2-8

    Article  Google Scholar 

  43. Poblete M, Fuentes W, Triantafyllidis T (2016) On the simulation of multidimensional cyclic loading with intergranular strain. Acta Geotech 11:1263–1285. doi:10.1007/s11440-016-0492-2

    Article  Google Scholar 

  44. Raymond GP (1985) Research on railroad ballast specification and evaluation. Track design and construction: Transportation Research Record, No. 1006, pp 1–8

  45. Rubin MB, Einav I (2011) A large deformation breakage model of granular materials including porosity and inelastic distortional deformation rate. Int J Eng Sci 49:1151–1169. doi:10.1016/j.ijengsci.2011.05.002

    Article  MathSciNet  MATH  Google Scholar 

  46. Sammis CG, Osborne RH, Anderson JL et al (1986) Self-similar cataclasis in the formation of fault gouge. Pure appl Geophys 124:53–78. doi:10.1007/BF00875719

    Article  Google Scholar 

  47. Suiker ASJ, de Borst R (2003) A numerical model for the cyclic deterioration of railway tracks. Int J Numer Methods Eng 57:441–470. doi:10.1002/nme.683

    Article  MATH  Google Scholar 

  48. Suiker ASJ, Selig ET, Frenkel R (2005) Static and cyclic triaxial testing of ballast and subballast. J Geotech Geoenviron Eng 131:771–782. doi:10.1061/(ASCE)1090-0241(2005)131:6(771)

    Article  Google Scholar 

  49. Tembe S, Baud P, Wong T (2008) Stress conditions for the propagation of discrete compaction bands in porous sandstone. J Geophys Res 113:1–16. doi:10.1029/2007JB005439

    Article  Google Scholar 

  50. Tengattini A, Das A, Nguyen GD et al (2014) A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part I—theory. J Mech Phys Solids 70:281–296. doi:10.1016/j.jmps.2014.05.021

    Article  MathSciNet  Google Scholar 

  51. Tengattini A, Das A, Einav I (2016) A constitutive modelling framework predicting critical state in sand undergoing crushing and dilation. Géotechnique. doi:10.1680/jgeot.14.P.164

    Google Scholar 

  52. Turcotte DL (1986) Fractals and fragmentation. J Geophys Res 91:1921–1926. doi:10.1029/JB091iB02p01921

    Article  Google Scholar 

  53. von Wolffersdorff P-A (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohesive-frict Mater 1:251–271. doi:10.1002/(SICI)1099-1484(199607)1:3<251:AID-CFM13>3.0.CO;2-3

    Article  Google Scholar 

  54. Wang G, Xie Y (2014) Modified bounding surface hypoplasticity model for sands under cyclic loading. J Eng Mech 140:91–101. doi:10.1061/(ASCE)EM.1943-7889.0000654

    Article  Google Scholar 

  55. Wang Z, Wong RCK, Qiao L (2011) Investigation on relations between grain crushing amount and void ratio change of granular materials in one-dimensional compression and creep tests. J Rock Mech Geotech Eng 3:415–420. doi:10.3724/SP.J.1235.2011.00415

    Article  Google Scholar 

  56. Wheat P, Smith ASJ (2008) Assessing the marginal infrastructure maintenance wear and tear costs for Britain’s railway network. J Transp Econ Policy 42:189–224

    Google Scholar 

  57. Wichtmann T, Triantafyllidis T (2016) An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: part I—tests with monotonic loading and stress cycles. Acta Geotech 11:739–761. doi:10.1007/s11440-015-0402-z

    Article  Google Scholar 

  58. Wu W, Kolymbas D (2000) Hypoplasticity then and now. In: Kolymbas D (eds) Constitutive modelling of granular materials. Springer, Heidelberg, pp 57–105

  59. Wu W, Lin J, Wang X (2017) A basic hypoplastic constitutive model for sand. Acta Geotech. doi:10.1007/s11440-017-0550-4

    Google Scholar 

  60. Zhang C (2012) Breakage mechanics in large granular flow problems. The University of Sydney, PhD Thesis

Download references

Acknowledgements

The authors acknowledge Dr. Itai Einav, Dr. Mousumi Mukherjee and three anonymous reviewers for their useful remarks that helped to improve the clarity of the paper. The financial support through the IIT Kanpur Initiation Grant (IITK/CE/2014156) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arghya Das.

Appendices

Appendix 1: Tangent stiffness tensor

The incremental stress–strain relationship is

$$\dot{\sigma }_{ij} = (1 - \theta B)D_{ijkl} (\dot{\varepsilon }_{kl} - \dot{\varepsilon }_{kl}^{\text{p}} ) - \theta \frac{\sigma }{(1 - \theta B)}\dot{B}.$$
(25)

The consistency condition of the yield surface is given by:

$$\dot{y} = \frac{\partial y}{{\partial \sigma_{ij} }}\dot{\sigma }_{ij} + \frac{\partial y}{\partial B}\dot{B} = 0.$$
(26)

The nonnegative multiplier can be derived by substituting the stress increment (Eq. (25)) and flow rules (Eqs. (79)) in Eq. (26)

$$ \dot{\lambda} = \frac{{\frac{{\partial y}}{{\partial \sigma _{{ij}} }}\left( {1 - \theta B} \right)D_{{ijkl}} \dot{\varepsilon }_{{kl}}^{{}} }}{{\frac{{\partial y}}{{\partial \sigma _{{pq}} }}\left( {\left( {1 - \theta B} \right)D_{{pqrs}} \frac{{\partial y*}}{{\partial \sigma _{{rs}} }} + \frac{{\theta \sigma _{{pq}} }}{{\left( {1 - \theta B} \right)}}\frac{{\partial y*}}{{\partial E_{B} }}} \right) - \frac{{\partial y}}{{\partial B}}\frac{{\partial y*}}{{\partial E_{B} }}}}.$$
(27)

Finally, substituting the flow rules (Eqs. (79)) and the nonnegative multiplier (Eq. (27)) in the incremental stress–strain relation (Eq. (25)), the tangent stiffness tensor is derived.

$$L_{{ijkl}} ~ = \left( {1 - \theta B} \right)\left( {D_{{ijkl}} - \frac{{D_{{ijmn}} \left( {\left( {1 - \theta B} \right)\frac{{\partial y*}}{{\partial \sigma _{{mn}} }} - \theta \varepsilon _{{mn}}^{e} \frac{{\partial y*}}{{\partial E_{B} }}} \right)\frac{{\partial y}}{{\partial \sigma _{{st}} }}D_{{stkl}} }}{{\frac{{\partial y}}{{\partial \sigma _{{pq}} }}\left( {\left( {1 - \theta B} \right)D_{{pqrs}} \frac{{\partial y*}}{{\partial \sigma _{{rs}} }} + \frac{{\theta \sigma _{{pq}} }}{{\left( {1 - \theta B} \right)}}\frac{{\partial y*}}{{\partial E_{B} }}} \right) - \frac{{\partial y}}{{\partial B}}\frac{{\partial y*}}{{\partial E_{B} }}}}} \right),$$
(28)

where \(\dot{\sigma }_{ij} = L_{ijkl} \dot{\varepsilon }_{kl}^{{}}\).

Appendix 2: Stress integration for hypo-plastic model

An explicit stress integration algorithm based on the multivariable Runge–Kutta method of order four (RK4) is used in the present study. Stress and breakage increment can be expressed in the following generalized form:

$$\dot{\sigma }_{ij} = k\left( {\sigma_{ij} , B} \right)\dot{\varepsilon }_{ij} ,$$
(29)
$$\dot{B} = j\left( {\sigma_{ij} , B} \right)\dot{\varepsilon }_{ij} .$$
(30)

According to RK4 method, at nth step, the updated stress and breakage are given by,

$$\left. {\sigma_{ij} } \right|_{n + 1} = \left. {\sigma_{ij} } \right|_{n} + \frac{{\dot{\varepsilon }_{ij} }}{6}\left( {k_{ijkl}^{1} + 2k_{ijkl}^{2} + 2k_{ijkl}^{3} + k_{ijkl}^{4} } \right),$$
(31)
$$B_{n + 1} = B_{n} + \frac{{\dot{\varepsilon }_{ij} }}{6}\left( {j_{ij}^{1} + 2j_{ij}^{2} + 2j_{ij}^{3} + j_{ij}^{4} } \right).$$
(32)

In Eqs. (31, 32), ks and js are the fourth- and second-order tensors, respectively. \(k_{ijkl}^{1}\) takes the similar form as tangent stiffness tensor (L ijkl ), since \(k_{ijkl}^{1}\) represents the slope between stress and strain,

$$k_{{ijkl}}^{1} = \left( {1 - \theta B} \right)\left( {D_{{ijkl}} - \frac{{D_{{ijmn}} \left( {\left( {1 - \theta B} \right)\frac{{\partial y*}}{{\partial \sigma _{{mn}} }} - \theta \varepsilon _{{mn}}^{e} \frac{{\partial y*}}{{\partial E_{B} }}} \right)\frac{{\partial y}}{{\partial \sigma _{{st}} }}D_{{stkl}} }}{{\frac{{\partial y}}{{\partial \sigma _{{pq}} }}\left( {\left( {1 - \theta B} \right)D_{{pqrs}} \frac{{\partial y*}}{{\partial \sigma _{{rs}} }} + \frac{{\theta \sigma _{{pq}} }}{{\left( {1 - \theta B} \right)}}\frac{{\partial y*}}{{\partial E_{B} }}} \right) - \frac{{\partial y}}{{\partial B}}\frac{{\partial y*}}{{\partial E_{B} }}}}} \right).$$
(33)

On the other hand, \(j_{ij}^{1}\) is the slope of breakage evolution against strain, \(\dot{B} = j_{ij} \dot{\varepsilon }_{ij}\). Therefore, substituting the nonnegative multiplier (\(\dot{\lambda }\), Eq. (27)) in the breakage evolution law (Eq. (7)) one can find,

$$j_{{ij}}^{1} = \frac{{\frac{{\partial y}}{{\partial \sigma _{{ij}} }}\left( {1 - \theta B} \right)D_{{ijkl}} \frac{{\partial y*}}{{\partial E_{B} }}}}{{\frac{{\partial y}}{{\partial \sigma _{{pq}} }}D_{{pqrs}} \left( {\left( {1 - \theta B} \right)\frac{{\partial y*}}{{\partial \sigma _{{rs}} }} + \theta \varepsilon _{{rs}}^{e} \frac{{\partial y*}}{{\partial E_{B} }}} \right) - \frac{{\partial y}}{{\partial B}}\frac{{\partial y*}}{{\partial E_{B} }}}}.$$
(34)

The remaining, ks and js can be obtained from regular RK4 formulation

$$k_{ijkl}^{2} = k\left( {\left. {\sigma_{ij} } \right|_{n} + k_{ijkl}^{1} \frac{{\dot{\varepsilon }_{kl} }}{2}, B_{n} + j_{kl}^{1} \frac{{\dot{\varepsilon }_{kl} }}{2}} \right),$$
(35)
$$k_{ijkl}^{3} = k\left( {\left. {\sigma_{ij} } \right|_{n} + k_{ijkl}^{2} \frac{{\dot{\varepsilon }_{kl} }}{2},B_{n} + j_{kl}^{2} \frac{{\dot{\varepsilon }_{kl} }}{2}} \right),$$
(36)
$$k_{ijkl}^{4} = k\left( {\left. {\sigma_{ij} } \right|_{n} + k_{ijkl}^{3} \dot{\varepsilon }_{kl} , B_{n} + j_{kl}^{3} \dot{\varepsilon }_{kl} } \right),$$
(37)
$$j_{kl}^{2} = j\left( {\left. {\sigma_{ij} } \right|_{n} + k_{ijkl}^{1} \frac{{\dot{\varepsilon }_{kl} }}{2}, B_{n} + j_{kl}^{1} \frac{{\dot{\varepsilon }_{kl} }}{2}} \right),$$
(38)
$$j_{kl}^{3} = j\left( {\left. {\sigma_{ij} } \right|_{n} + k_{ijkl}^{2} \frac{{\dot{\varepsilon }_{kl} }}{2},B_{n} + j_{kl}^{2} \frac{{\dot{\varepsilon }_{kl} }}{2}} \right),$$
(39)
$$j_{kl}^{4} = j\left( {\left. {\sigma_{ij} } \right|_{n} + k_{ijkl}^{3} \dot{\varepsilon }_{kl} , B_{n} + j_{kl}^{3} \dot{\varepsilon }_{kl} } \right).$$
(40)

The performance of the algorithm is evaluated by comparing the mechanical response of the hypo-plastic model for drained triaxial compression obtained using the forward Euler method. Figure 12 indicates better convergence in the stress–strain response obtained by using the RK4 method with higher strain increment.

Fig. 12
figure 12

Stress–strain plot at different stress increment by using: a Euler forward method; b fourth-order Runge–Kutta method for drained triaxial compression

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Bajpai, P.K. A hypo-plastic approach for evaluating railway ballast degradation. Acta Geotech. 13, 1085–1102 (2018). https://doi.org/10.1007/s11440-017-0584-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0584-7

Keywords

Navigation