Skip to main content
Log in

Rattler wedging and force chain buckling: metastable attractor dynamics of local grain rearrangements underlie globally bistable shear banding regime

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Grain rearrangements govern the mechanical response of granular materials under load. A comprehensive time series analysis of macroscopic stress, previously undertaken for the persistent shear banding regime, uncovered a bistable dynamical system with two interconnected attractor basins—one tied to jamming, the other to unjamming. Here we examine the state space of local fabric of a 3D granular material to uncover the underlying grain rearrangements which induce the system to switch basins and manifest macroscopic quasistationary dynamics. The fabric state space comprises metastable attractors organized according to structural determinacy: hypostatic, isostatic and hyperstatic. Although trajectories overwhelmingly favor identity transitions which preserve local fabric, rare nonidentity transitions hold the key to basin switching. Jamming basin dynamics is governed by force chain transitions in the hyperstatic region: here redundant constraints enable force reconfigurations with little to no change in the local fabric. But as force chains become overloaded, they buckle. Buckling and attendant dilatancy push grains to the isostatic region. This in turn triggers unjamming and ensuant transitions to the hypostatic region where rattlers, though few, dominate dynamics. Rattlers provide wedge-like supports to unstable misaligned particle columns, promoting force chain formation and return to the hyperstatic region. The lateral reinforcement of an isostatically constrained grain in a trimer by the addition of a contact and/or a 3-cycle is the most probable nonidentity transition during nascent force chain evolution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schindler, T., Kapfer, S.C.: Nonequilibrium steady states, coexistence, and criticality in driven quasi-two-dimensional granular matter. Phys. Rev. E 99, 022902 (2019)

    Article  ADS  Google Scholar 

  2. Bergantz, G.W., Schleicher, J.M., Burgisser, A.: On the kinematics and dynamics of crystal-rich systems. J. Geophys. Res. Solid Earth 122(8), 6131 (2017)

    Article  ADS  Google Scholar 

  3. Kuhn, M.R.: Dense granular flow at the critical state: maximum entropy and topological disorder. Granul. Matter 16(4), 499 (2014)

    Article  Google Scholar 

  4. Tordesillas, A., Lin, Q., Zhang, J., Behringer, R.P., Shi, J.: Structural stability and jamming of self-organized cluster conformations in dense granular materials. J. Mech. Phys. Solids 59, 265 (2011)

    Article  ADS  Google Scholar 

  5. Bardet, J.P., Proubet, J.: A numerical investigation of the structure of persistent shear bands in granular media. Géotechnique 41, 599 (1991)

    Article  Google Scholar 

  6. Rechenmacher, A., Abedi, S., Chupin, O.: Evolution of force chains in shear bands in sands. Géotechnique 60, 343 (2010)

    Article  Google Scholar 

  7. Tordesillas, A., Muthuswamy, M., Walsh, S.D.: Mesoscale measures of nonaffine deformation in dense granular assemblies. J. Eng. Mech. 134, 1095 (2008)

    Article  Google Scholar 

  8. Tordesillas, A., Pucilowski, S., Lin, Q., Peters, J.F., Behringer, R.P.: Granular vortices: identification, characterization and conditions for the localization of deformation. J. Mech. Phys. Solids 90, 215 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. Schofield, A.N., Wroth, C.P.: Critical State Soil Mechanics. McGraw-Hill, Cambridge University, United Kingdom (1968)

    Google Scholar 

  10. Kruyt, N.P., Rothenburg, L.: On micromechanical characteristics of the critical state of two-dimensional granular materials. Acta Mechanica 225, 2301 (2014)

    Article  MathSciNet  Google Scholar 

  11. Kuhn, M.R.: The critical state of granular media: convergence, stationarity and disorder. Géotechnique 66(11), 902 (2016)

    Article  Google Scholar 

  12. Guo, N., Zhao, J.: The signature of shear-induced anisotropy in granular media. Comput. Geotech. 47, 1 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Gao, Z., Zhao, J., Li, X.S., Dafalias, Y.F.: A critical state sand plasticity model accounting for fabric evolution. Int. J. Numer. Anal. Methods Geomech. 38(4), 370 (2013)

    Article  Google Scholar 

  14. Yang, Y., Cheng, Y., Wang, J.: Exploring the contact types within mixtures of different shapes at the steady state by DEM. Powder Technol. 301, 440 (2016)

    Article  Google Scholar 

  15. Schunter, D.J., Brandenbourger, M., Perriseau, S., Holmes, D.P.: Elastogranular mechanics: buckling, jamming, and structure formation. Phys. Rev. Lett. 120, 078002 (2018)

    Article  ADS  Google Scholar 

  16. Chang, M., Huang, P., Pei, J., Zhang, J., Zheng, B.: Quantitative analysis on force chain of asphalt mixture under Haversine loading. Adv. Mater. Sci. Eng. 2017, 7128602 (2017)

    Google Scholar 

  17. Tordesillas, A., Zhou, Z., Batterham, R.: A data-driven complex systems approach to early prediction of landslides. Mech. Res. Commun. 92, 137 (2018)

    Article  Google Scholar 

  18. Suckale, J., Keller, T., Cashman, K.V., Persson, P.O.: Flow-to-fracture transition in a volcanic mush plug may govern normal eruptions at Stromboli. Geophys. Res. Lett. 43(23), 12071 (2016)

    Article  ADS  Google Scholar 

  19. Kumar, N., Luding, S.: Memory of jamming-multiscale models for soft and granular matter. Granul. Matter 18(3), 58 (2016)

    Article  Google Scholar 

  20. Gao, Z., Zhao, J.: 3D multiscale modeling of strain localization in granular media. Comput. Geotech. 80, 360 (2016)

    Article  Google Scholar 

  21. Tordesillas, A., Muthuswamy, M.: On the modeling of confined buckling of force chains. J. Mech. Phys. Solids 57, 706 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. Tordesillas, A., Walker, D.M., Froyland, G., Zhang, J., Behringer, R.P.: Transition dynamics and magic-number-like behavior of frictional granular clusters. Phys. Rev. E 86, 011306 (2012)

    Article  ADS  Google Scholar 

  23. Walker, D.M., Tordesillas, A., Brodu, N., Dijksman, J.A., Behringer, R.P., Froyland, G.: Self-assembly in a near-frictionless granular material: conformational structures and transitions in uniaxial cyclic compression of hydrogel spheres. Soft Matter 11, 2157 (2015)

    Article  ADS  Google Scholar 

  24. Small, M., Walker, D.M., Tordesillas, A., Tse, C.K.: Characterizing chaotic dynamics from simulations of large strain behavior of a granular material under biaxial compression. Chaos 23, 013113 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. Walker, D.M., Tordesillas, A., Froyland, G.: Mesoscale and macroscale kinetic energy fluxes from granular fabric evolution. Phys. Rev. E 89, 032205 (2014)

    Article  ADS  Google Scholar 

  26. Tordesillas, A.: Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Philos. Mag. 87, 4987 (2007)

    Article  ADS  Google Scholar 

  27. Tordesillas, A., Pucilowski, S., Walker, D.M., Peters, J.F., Walizer, L.E.: Micromechanics of vortices in granular media: connection to shear bands and implications for continuum modelling of failure in geomaterials. Int. J. Numer. Anal. Methods Geomech. 38, 1247 (2014)

    Article  Google Scholar 

  28. Kozicki, J., Donzé, F.: A new open-source software developed for numerical simulations using discrete modeling methods. Comput. Methods Appl. Mech. Eng. 197, 4429 (2008)

    Article  ADS  Google Scholar 

  29. Smilauer, V., et al.: Yade Documentation 2nd ed. The Yade Project (2015). https://doi.org/10.5281/zenodo.34073

  30. Muthuswamy, M., Tordesillas, A.: How do interparticle contact friction, packing density and degree o f polydispersity affect force propagation in particulate assemblies? J. Stat. Mech. Theory Exp. P09003, P09003 (2006)

    MATH  Google Scholar 

  31. Froyland, G.: Statistically optimal almost-invariant sets. Physica D 200, 205 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  32. Deuflhard, P., Weber, M.: Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl. 398, 161 (2005)

    Article  MathSciNet  Google Scholar 

  33. Newman, M.: Networks, 2nd edn. Oxford University Press, Oxford (2018)

    Book  Google Scholar 

  34. Wautier, A., Bonelli, S., Nicot, F.: Rattlers’ contribution to granular plasticity and mechanical stability. Int. J. Plast. 112, 172 (2019)

    Article  Google Scholar 

  35. Giacco, F., De Arcangelis, L., Pica Ciamarra, M., Lippiello, E.: Rattler-induced aging dynamics in jammed granular systems. Soft Matter 13, 9132–9137 (2017)

    Article  ADS  Google Scholar 

  36. Wang, D., Ren, J., Dijksman, J.A., Zheng, H., Behringer, R.P.: Microscopic origins of shear jamming for 2D frictional grains. Phys. Rev. Lett. 120, 208004 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank David M. Walker and Michael Small for useful discussions and our two anonymous reviewers whose insightful comments have improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoinette Tordesillas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: In Memoriam of Robert P. Behringer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pucilowski, S., Tordesillas, A. Rattler wedging and force chain buckling: metastable attractor dynamics of local grain rearrangements underlie globally bistable shear banding regime. Granular Matter 22, 18 (2020). https://doi.org/10.1007/s10035-019-0979-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0979-2

Keywords

Navigation