Skip to main content
Log in

Investigating the effects of Fourier-based particle shape on the shear behaviors of rockfill material via DEM

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This report investigates the effects of Fourier-based particle shape on the macroscopic and microscopic shear responses of rockfill material via a series of numerical biaxial compression tests. The multi-disk method is employed to model two-dimensional irregular rockfill particles. The macroscopic characteristics, including the shear strength and the dilatancy response, and the microscopic characteristics, including the contact force, the coordination number and the sliding contact, are examined. Then, detailed analyses of the fabric anisotropy of the entire contact network empower us to understand the microscopic mechanisms that lead to the dependency of the shear strength on particle shape. Subsequently, analyses concerning the fabric anisotropy of the strong and weak contact networks are carried out. It is found that the macroscopic stress ratio exhibits a linear pattern with the anisotropic coefficient of contacts in the strong contact network, and that the slope depends on particle shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Hartl, J., Ooi, J.Y.: Numerical investigation of particle shape and particle friction on limiting bulk friction in direct shear tests and comparison with experiments. Powder Technol. 212(1), 231–239 (2011)

    Article  Google Scholar 

  2. Kozicki, J., Tejchman, J., Mroz, Z.: Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granul. Matter 14(4), 457–468 (2012)

    Article  Google Scholar 

  3. Azéma, E., Radjaï, F., Saint-Cyr, B., Delenne, J.Y., Sornay, P.: Rheology of three-dimensional packings of aggregates: microstructure and effects of nonconvexity. Phys. Rev. E 87(5), 052205 (2013)

    Article  ADS  Google Scholar 

  4. Yagiz, S.: Brief note on the influence of shape and percentage of gravel on the shear strength of sand and gravel mixtures. Bull. Eng. Geol. Environ. 60(4), 321–323 (2001)

    Article  Google Scholar 

  5. Chen, H.G., Wan, J.P.: The effect of orientation and shape distribution of gravel on slope angles in central Taiwan. Eng. Geol. 72(1–2), 19–31 (2004)

    Article  Google Scholar 

  6. Li, Y.R., Huang, R.Q., Chan, L.S., Chen, J.: Effects of particle shape on shear strength of clay-gravel mixture. KSCE J. Civil Eng. 17(4), 712–717 (2013)

    Article  Google Scholar 

  7. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  8. Wang, J., Gutierrez, M.: Discrete element simulations of direct shear specimen scale effects. Geotechnique 60(5), 395–409 (2010)

    Article  Google Scholar 

  9. Gu, X.Q., Yang, J.: A discrete element analysis of elastic properties of granular materials. Granul. Matter 15(2), 139–147 (2013)

    Article  Google Scholar 

  10. Gu, X.Q., Yang, J., Huang, M.S.: DEM simulations of the small strain stiffness of granular soils: effect of stress ratio. Granul. Matter 15(3), 287–298 (2013)

    Article  Google Scholar 

  11. Gu, X.Q., Huang, M.S., Qian, J.G.: DEM investigation on the evolution of microstructure in granular soils under shearing. Granul. Matter 16(1), 91–106 (2014)

    Article  Google Scholar 

  12. Huang, X., Hanley, K.J., O’Sullivan, C., Kwok, F.C.Y.: Effect of sample size on the response of DEM samples with a realistic grading. Particuology 15, 107–115 (2014)

    Article  Google Scholar 

  13. Lopez, R.D., Ekblad, J., Silfwerbrand, J.: Resilient properties of binary granular mixtures: a numerical investigation. Comput. Geotech. 76, 222–233 (2016)

    Article  Google Scholar 

  14. Lopez, R.D., Silfwerbrand, J., Jelagin, D., Birgisson, B.: Force transmission and soil fabric of binary granular mixtures. Geotechnique 66(7), 578–583 (2016)

    Article  Google Scholar 

  15. Gong, J., Liu, J.: Mechanical transitional behavior of binary mixtures via DEM: effect of differences in contact-type friction coefficients. Comput. Geotech. 85, 1–14 (2017)

    Article  Google Scholar 

  16. Sufian, A., Russell, A.R., Whittle, A.J.: Anisotropy of contact networks in granular media and its influence on mobilised internal friction. Geotechnique 67(12), 1067–1080 (2017)

    Google Scholar 

  17. Hosseininia, E.S.: Investigating the micromechanical evolutions within inherently anisotropic granular materials using discrete element method. Granul. Matter 14(4), 483–503 (2007)

    Article  Google Scholar 

  18. Zhao, S.W., Zhou, X.W., Liu, W.H.: Discrete element simulations of direct shear tests with particle angularity effect. Granul. Matter 17(6), 793–806 (2015)

    Article  Google Scholar 

  19. Ting, J.M., Meachum, L., Rowell, J.D.: Effect of particle shape on the strength and deformation mechanisms of ellipse-shaped granular assemblages. Eng. Comput. 12(2), 99–108 (1995)

    Article  Google Scholar 

  20. Ng, T.T.: Particle shape effect on macro- and micro-behaviors of monodisperse ellipsoids. Int. J. Numer. Anal. Methods 33(4), 511–527 (2009)

    Article  Google Scholar 

  21. Zhao, S.W., Zhou, X.W.: Effects of particle asphericity on the macro- and micro-mechanical behaviors of granular assemblies. Granul. Matter 19(2), 38 (2017)

    Article  Google Scholar 

  22. Stahl, M., Konietzky, H.: Discrete element simulation of ballast and gravel under special consideration of grain-shape, grain-size and relative density. Granul. Matter 13(4), 417–428 (2011)

    Article  Google Scholar 

  23. Altuhafi, F., O’Sullivan, C., Cavarretta, I.: Analysis of an image-based method to quantify the size and shape of sand particles. J. Geotech. Geoenviron. Eng. 139(8), 1290–1307 (2013)

    Article  Google Scholar 

  24. Zhu, J.Y., Liang, Y.Y., Zhou, Y.H.: The effect of the particle aspect ratio on the pressure at the bottom of sandpiles. Powder Technol. 234, 37–45 (2013)

    Article  Google Scholar 

  25. Gong, J., Liu, J.: Effect of aspect ratio on triaxial compression of multi-sphere ellipsoid assemblies simulated using a discrete element method. Particuology 32, 49–62 (2017)

    Article  Google Scholar 

  26. Azéma, E., Radjaï, F.: Stress-strain behavior and geometrical properties of packings of elongated particles. Phys. Rev. E 81(5), 051304 (2010)

    Article  ADS  Google Scholar 

  27. Sun, Y., Indraratna, B., Nimbalkar, S.: Three-dimensional characterisation of particle size and shape for ballast. Geotech. Lett. 4, 197–202 (2014)

    Article  Google Scholar 

  28. Yang, J., Luo, X.D.: Exploring the relationship between critical state and particle shape for granular materials. J. Mech. Phys. Solids 84, 196–213 (2015)

    Article  ADS  Google Scholar 

  29. Zhao, B.D., Wang, J.F.: 3D quantitative shape analysis on form, roundness, and compactness with μCT. Powder Technol. 291, 262–275 (2016)

    Article  Google Scholar 

  30. Zheng, J., Hryciw, R.D.: Traditional soil particle sphericity, roundness and surface roughness by computational geometry. Geotechnique 65(6), 494–506 (2015)

    Article  Google Scholar 

  31. Zhao, L.H., Huang, D.L., Dan, H.C., Zhang, S.H., Li, D.J.: Reconstruction of granular railway ballast based on inverse discrete Fourier transform method. Granul. Matter 19(4), 74 (2017)

    Article  ADS  Google Scholar 

  32. Cho, G.C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng. 132(5), 591–602 (2006)

    Article  Google Scholar 

  33. Zheng, J.X., Hryciw, R.D.: Roundness and sphericity of soil particles in assemblies by computational geometry. J. Comput. Civil Eng. 30(6), 04016021 (2016)

    Article  Google Scholar 

  34. Ehrlich, R., Weinberg, B.: An exact method for characterization of grain shape. J. Sediment. Petrol. 40(1), 205–212 (1970)

    Google Scholar 

  35. Meloy, T.P.: Fast fourier transforms applied to shape analysis of particle silhouettes to obtain morphological data. Powder Technol. 17, 27–35 (1977)

    Article  Google Scholar 

  36. Bowman, E.T.: Particle shape characterisation using Fourier descriptor analysis. Geotechnique 51(6), 545–554 (2000)

    Article  Google Scholar 

  37. Mollon, G., Zhao, J.D.: Fourier–Voronoi-based generation of realistic samples for discrete modelling of granular materials. Granul. Matter 14(5), 621–638 (2012)

    Article  Google Scholar 

  38. Mollon, G., Zhao, J.D.: Generating realistic 3D sand particles using Fourier descriptors. Granul. Matter 15(1), 95–108 (2013)

    Article  Google Scholar 

  39. Mollon, G., Zhao, J.D.: Characterization of fluctuations in granular hopper flow. Granul. Matter 15(6), 827–840 (2013)

    Article  Google Scholar 

  40. Liu, Z., Zhao, J., Mollon, G.: The influence of particle shape for granular media: a fourier-shape-descriptor-based micromechanical study. In: Proceedings of 3rd International Symposium on Geomechanics from Micro to Macro, Cambridge, England (2015)

  41. Azéma, E., Radjaï, F.: Force chains and contact network topology in sheared packings of elongated particles. Phys. Rev. E 85(3), 031303 (2012)

    Article  ADS  Google Scholar 

  42. Suhr, B., Six, K.: Friction phenomena and their impact on the shear behaviour of granular material. Comput. Part. Mech. 4(1), 23–34 (2017)

    Article  Google Scholar 

  43. Zhao, T.T., Feng, Y.T., Wang, M.: An extended Greenwood–Williamson modelbased normal interaction law for discrete element modelling of spherical particles with surface roughness. Int. J. Numer. Anal. Methods 42(14), 1624–1642 (2018)

    Article  Google Scholar 

  44. Taghavi, R.: Automatic clump generation based on mid-surface. In: Proceedings of Continuum and Distinct Element Numerical Modeling in Geomechanics (2011)

  45. Itasca: User’s manual for PFC2D version PFC5.0. Itasca consulting Group Inc., Minneapolis (2014)

    Google Scholar 

  46. Alaei, E., Mahboubi, A.: A discrete model for simulating shear strength and deformation behaviour of rockfill material, considering the particle breakage phenomenon. Granul. Matter 14(6), 707–717 (2012)

    Article  Google Scholar 

  47. Zhou, W., Ma, G., Chang, X.L., Zhou, C.B.: Influence of particle shape on behavior of rockfill using a three-dimensional deformable DEM. J. Eng. Mech. 139(12), 1868–1873 (2013)

    Article  Google Scholar 

  48. Ma, G., Zhou, W., Chang, X.-L., Yuan, W.: Combined FEM/DEM modeling of triaxial compression tests for rockfills with polyhedral particles. Int. J. Geomech. 14(4), 04014014 (2014)

    Article  Google Scholar 

  49. Goldenberg, C., Goldhirsch, I.: Friction enhances elasticity in granular solids. Nature 435(7039), 188–191 (2005)

    Article  ADS  Google Scholar 

  50. Jamiolkowski, M., Kongsukprasert, L., Lo Presti, D.: Characterization of gravelly geomaterials. In: Proceedings of the Fifth International Geotechnical Conference, Bangkok, Thailand (2004)

  51. Deluzarche, R., Cambou, B.: Discrete numerical modelling of rockfill dams. Int. J. Numer. Anal. Methods 30(11), 1075–1096 (2006)

    Article  Google Scholar 

  52. Abbireddy, C.O.R., Clayton, C.R.I.: Varying initial void ratios for DEM simulations. Geotechnique 60(6), 497–502 (2010)

    Article  Google Scholar 

  53. Han, H.X., Chen, W., Huang, B., Fu, X.D.: Numerical simulation of the influence of particle shape on the mechanical properties of rockfill materials. Eng. Comput. 34(7), 2228–2241 (2017)

    Article  Google Scholar 

  54. da Cruz, F., Emam, S., Prochnow, M., Roux, J.N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72(2), 021309 (2005)

    Article  ADS  Google Scholar 

  55. Perez, J.C.L., Kwok, C.Y., O’Sullivan, C., Huang, X., Hanley, K.J.: Assessing the quasi-static conditions for shearing in granular media within the critical state soil mechanics framework. Soils Found. 56(1), 152–159 (2016)

    Article  Google Scholar 

  56. Azéma, E., Radjaï, F., Peyroux, R.: Force transmission in a packing of pentagonal particles. Phys. Rev. E 76(1), 011301 (2007)

    Article  ADS  Google Scholar 

  57. Estrada, N., Taboada, A., Radjaï, F.: Shear strength and force transmission in granular media with rolling resistance. Phys. Rev. E 78(2), 021301 (2008)

    Article  ADS  Google Scholar 

  58. Nguyen, D.H., Azéma, E., Sornay, P., Radjaï, F.: Effects of shape and size polydispersity on strength properties of granular materials. Phys. Rev. E 91(3), 032203 (2015)

    Article  ADS  Google Scholar 

  59. Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39(4), 601–614 (1989)

    Article  Google Scholar 

  60. Yang, J., Dai, B.B.: Is the quasi-steady state a real behaviour? A micromechanical perspective. Geotechnique 61(2), 175–183 (2011)

    Article  Google Scholar 

  61. Markauskas, D., Kacianauskas, R., Dziugys, A., Navakas, R.: Investigation of adequacy of multi-sphere approximation of elliptical particles for DEM simulations. Granul. Matter 12(1), 107–123 (2010)

    Article  Google Scholar 

  62. Estrada, N., Azéma, E., Radjaï, F., Taboada, A.: Identification of rolling resistance as a shape parameter in sheared granular media. Phys. Rev. E 84(1), 011306 (2011)

    Article  ADS  Google Scholar 

  63. Kanatani, K.I.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22(2), 149–164 (1984)

    Article  MathSciNet  Google Scholar 

  64. Guo, N., Zhao, J.D.: The signature of shear-induced anisotropy in granular media. Comput. Geotech. 47, 1–15 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 51478481 and 51809292), Beijing Municipal Science and Technology Project: Research and Application of Design and Construction Technology of Railway Engineering Traveling the Rift Valley (No. Z181100003918005) and the Fundamental Research Funds for the Central Universities of Central South University (No. 2018zzts195). The authors would like to express their appreciation for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Gong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Z., Zhu, Y., Wang, X. et al. Investigating the effects of Fourier-based particle shape on the shear behaviors of rockfill material via DEM. Granular Matter 21, 22 (2019). https://doi.org/10.1007/s10035-019-0875-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0875-9

Keywords

Navigation