Skip to main content
Log in

DEM investigation on the evolution of microstructure in granular soils under shearing

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The mechanical behaviors of granular soils at different initial densities and confining pressures in the drained and undrained triaxial tests are investigated micromechanically by three-dimensional discrete element method (DEM). The evolutions of the microstructure in the numerical specimen, including coordination number, contact force and anisotropies of contact normal and contact force, are monitored during the shearing. The typical shear behaviors of granular soils (e.g. strain softening, phase transformation, static liquefaction and critical state behavior) are successfully captured in the DEM simulation. It is found that the anisotropies of contact normal, normal and tangential contact forces comprise the shear resistance and show different evolution features during shearing. After large strain shearing, the microstructure of the soil will finally reach a critical state, although the evolution path depends on the soil density and loading mode. Similar to the macroscopic void ratio \(e\) and deviatoric stress \(q\), the coordination number and anisotropies of contact normal and contact force at the critical state also depend on the mean normal effective stress \(P^{\prime }\) at the critical state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Been, K., Jefferies, M.G.: A state parameter for sands. Géotechnique 35(2), 99–112 (1985)

    Article  Google Scholar 

  2. Poulos, S.J.: The steady state of deformation. J. Geotech. Eng. Div. ASCE 107(5), 553–562 (1981)

    Google Scholar 

  3. Verdugo, R., Ishihara, K.: The steady state of sandy soils. Soils Found. 36(2), 81–91 (1996)

    Article  Google Scholar 

  4. Doanh, T., Ibraim, E., Matiotti, R.: Undrained instability of very loose Hostun sand in triaxial compression and extension. Part 1: experimental observations. Mech. Cohes.-Frict. Mat. 2(1), 47–70 (1997)

    Article  Google Scholar 

  5. Yamamuro, J.A., Lade, P.V.: Static liquefaction of very loose sands. Can. Geotech. J. 34, 905–917 (1997)

    Google Scholar 

  6. Yamamuro, J.A., Lade, P.V.: Steady-state concepts and static liquefaction of silty sands. J. Geotech. Geoenviron. Eng. ASCE 124(9), 868–877 (1998)

    Article  Google Scholar 

  7. Rahman, M.M., Lo, S.R.: Predicting the onset of static liquefaction of loose sand with fines. J. Geotech. Geoenviron. Eng. ASCE 138(8), 1037–1041 (2011)

    Google Scholar 

  8. Oda, M., Nemat-Nasser, S., Konishi, J.: Stress-induced anisotropy in granular masses. Soils Found. 25(3), 85–97 (1985)

    Article  Google Scholar 

  9. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)

    Article  ADS  Google Scholar 

  10. Yang, Z.X., Li, X.S., Yang, J.: Quantifying and modelling fabric anisotropy of granular soils. Géotechnique 58(4), 237–248 (2008)

    Article  Google Scholar 

  11. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  12. Dobry, R., Ng, T.T.: Discrete modeling of stress–strain behavior of granular media at small and large strains. Eng. Comput. 9, 129–143 (1992)

    Article  Google Scholar 

  13. Radjai, F., Jean, M., Moreau, J.-J., Roux, S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77(2), 274–277 (1996)

    Article  ADS  Google Scholar 

  14. Radjai, F., Wolf, D.E., Jean, M., Moreau, J.-J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61–64 (1998)

    Article  ADS  Google Scholar 

  15. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  16. Sitharam, T.G., Dinesh, S.V., Shimizu, N.: Micromechanical modeling of monotonic drained and undrained shear behavior of granular media using three-dimensional DEM. Int. J. Numer. Anal. Meth. Geomech. 26, 1167–1189 (2002)

    Article  MATH  Google Scholar 

  17. Sitharam, T.G., Vinod, J.S., Ravishankar, B.V.: Post-liquefaction undrained monotonic behavior of sands: experiments and DEM simulations. Géotechnique 59(9), 739–749 (2009)

    Article  Google Scholar 

  18. Alonso-Marroquin, F., Luding, S., Herrmann, H.J., Vardoulakis, I.: Role of anisotropy in the elastoplastic response of a polygonal packing. Phys. Rev. E 71(5), 051304 (2005)

    Article  ADS  Google Scholar 

  19. Yan, W.M., Dong, J.J.: Effect of particle grading on the response of an idealized granular assemblage. Int. J. Geomech. 11(4), 276–285 (2010)

    Article  MathSciNet  Google Scholar 

  20. Yimsiri, S., Soga, K.: DEM analysis of soil fabric effects on behavior of sand. Géotechnique 60(6), 483–495 (2010)

    Article  Google Scholar 

  21. Huang, X., Kwok, C.Y., O’sullivan, C., Tham, L.G.: DEM modeling of the critical-state behavior of a granular material. In: Choi, C.-K. (ed.) Proceeding of the 2012 World Congress on Advances in Civil, Environmental, and Materials Research, pp. 597–611, Seoul, Korea (2012)

  22. Zhao, X., Evans, T.M.: Numerical analysis of critical state behaviors of granular soils under different loading conditions. Granul. Matter 13(6), 751–764 (2011)

    Article  Google Scholar 

  23. Guo, N., Zhao, J.D.: The signature of shear-induced anisotropy in granular media. Comput. Geotech. 47, 1–15 (2013)

    Article  ADS  Google Scholar 

  24. Muir Wood, D., Maeda, K.: Changing grading of soil: effect on critical states. Acta Geotech. 3, 3–14 (2008)

    Article  Google Scholar 

  25. Itasca: Particle Flow Code (PFC3D) Manual. Itasca Consulting Group Inc., Minn (2009)

  26. Yan, W.M.: Particle elongation and deposition effect to macroscopic and microscopic responses of numerical direct shear tests. Geotech. Test. J. 34(3), 238–249 (2011)

    Google Scholar 

  27. Andrade, J.E., Chen, Q., Le, P.H., Avila, C.F., Evans, T.M.: On the rheology of dilative granular media: bridging solid- and fluid-like behavior. J. Mech. Phys. Solids 60, 1122–1136 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  28. Duffy, J., Mindlin, R.D.: Stress–strain relations and vibrations of a granular medium. J. Appl. Mech. 24, 585–593 (1957)

    MathSciNet  Google Scholar 

  29. Yang, J., Gu, X.Q.: Shear stiffness of granular material at small strain: does it depend on grain size? Geotechnique 63(2), 165–179 (2012)

    Article  Google Scholar 

  30. Sze, H.Y.: Initial Shear and Confining Stress Effects on Cyclic Behavior and Liquefaction Resistance of Sands. PhD thesis, The University of Hong Kong, Hong Kong (2010)

  31. Li, X.: Micro-scale Investigation of the Quasi-Static Behavior of Granular Material. PhD thesis, The Hong Kong University of Science and Technology, Hong Kong (2006)

  32. Alonso-Marroquin, Vardoulakis, I., Herrmann, H.J., Weatherley, D., Mora, P.: Effect of rolling on dissipation in fault gouge. Phys. Rev. E 74(3), 031306 (2006)

    Article  ADS  Google Scholar 

  33. Ishihara, K.: Liquefaction and flow failure during earthquakes. Géotechnique 43(3), 351–415 (1993)

    Article  Google Scholar 

  34. Been, K., Jefferies, M.G., Hachey, J.: The critical sate of sands. Géotechnique 41(3), 365–381 (1991)

    Article  Google Scholar 

  35. Marsal, R.J.: Mechanical Properties of Rockfill. Embankment Dam Engineering, pp. 109–145 (1973)

  36. Oda, M.: Co-ordination number and its relation to shear strength of granular materials. Soils Found. 14(4), 109–145 (1977)

    Google Scholar 

  37. Agnolin, I., Roux, J.-N.: Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks. Phys. Rev. E 76(6), 061302 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  38. Magnanimo, V., Rigione, L.L.A., Jenkins, J.T., Wang, P., Makse, H.A.: Characterizing the shear and bulk moduli of an idealized granular material. Europhys. Lett. 81, 34006 (2008)

    Article  ADS  Google Scholar 

  39. De Alba, P., Baldwin, K., Janoo, V., Roe, G., Celikkol, B.: Elastic-wave velocities and liquefaction potential. Geotech. Test. J. 7(2), 77–87 (1984)

    Article  Google Scholar 

  40. Ishibashi, I., Capar, O.F.: Anisotropy and its relation to liquefaction resistance of granular material. Soils Found. 43(5), 149–159 (2003)

    Article  Google Scholar 

  41. Agnolin, I., Roux, J.-N.: Internal states of model isotropic granular packings. III. Elastic properties. Phys. Rev. E 76(6), 061304 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  42. Gu, X.Q., Yang, J.: A discrete element analysis of elastic properties of granular materials. Granul. Matter 15(2), 139–147 (2013)

    Article  MathSciNet  Google Scholar 

  43. Gu, X.Q., Yang, J., Huang, M.S.: DEM simulations of the small strain stiffness of granular soils: effect of stress ratio. Granul. Matter 15(3), 287–298 (2013)

    Article  Google Scholar 

  44. Kumar, N., Imole, I.O., Magnanimo, V., Luding, S.: Effects of polydispersity on the micro-macro behavior of granular assemblies under different deformation paths. Particuology (2013). http://dx.doi.org/10.1016/j.partic.2013.07.011

  45. Yang, J., Dai, B.B.: Is the quasi-steady state a real behavior? A micromechanical perspective. Géotechnique 61(2), 175–183 (2009)

    Article  Google Scholar 

  46. Gong, G.B.: DEM Simulation of Drained and Undrained Behavior. PhD thesis, The University of Birmingham, UK (2008)

  47. Duran, O., Kruyt, N.P., Luding, S.: Micro-mechanical analysis of deformation characteristics of three-dimensional granular materials. Int. J. Solids Struct. 47(17), 2234–2245 (2010)

    Google Scholar 

  48. Rothenburg, L., Kruyt, N.P.: Critical state and evolution of coordination number in simulated granular materials. Int. J. Solids Struct. 41, 5763–5774 (2004)

    Article  MATH  Google Scholar 

  49. Azeme, E., Radjai, F.: Stress–strain behavior and geometrical properties of packings of elongated particles. Phys. Rev. E 81(5), 051304 (2010)

    Article  ADS  Google Scholar 

  50. Azeme, E., Radjai, F.: Force chains and contact network topology in sheared packings of elongated particles. Phys. Rev. E 85(3), 031303 (2012)

    Article  ADS  Google Scholar 

  51. Chang, C.S., Misra, A., Sundaram, S.S.: Properties of granular packing under low amplitude cyclic loading. Soil Dyn. Earthq. Eng. 10(4), 201–211 (1991)

    Article  Google Scholar 

  52. Kuhn, M.R.: Structured deformation in granular materials. Mech. Mater 31, 407–419 (1999)

    Article  Google Scholar 

  53. Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39(4), 601–614 (1989)

    Article  Google Scholar 

  54. Azeme, E., Radjai, F., Saint-Cyr, B., Delenne, J.-Y., Sornay, P.: Rheology of three-dimensional packings of aggregates: microstructure and effects of nonconvexity. Phys. Rev. E 87(5), 052205 (2013)

    Article  ADS  Google Scholar 

  55. Imole, I.O., Magnanimo, V., Luding, S.: Micro-macro correlations and anisotropy in granular assemblies under uniaxial loading and unloading. Phys. Rev. E. (2013) (submitted)

  56. Chantawarungal, K.: Numerical Simulations of Three Dimensional Granular Assemblies. PhD thesis, University of Waterloo, Ontario, Canada (1993)

  57. Masin, D.: Asymptotic behaviour of granular materials. Granul. Matter 14(6), 759–774 (2012)

    Google Scholar 

  58. Dafalias, Y.F., Paradimitriou, A.G., Li, X.S.: Sand plasticity model accounting for inherent fabric anisotropy. J. Eng. Mech. 130(11), 1319–1333 (2004)

    Article  Google Scholar 

  59. Li, X.S., Dafalias, Y.F.: anisotropic critical state theory: role of fabric. J. Eng. Mech. 138(3), 263–275 (2012)

    Article  Google Scholar 

  60. Qian, J.G., You, Z.P., Huang, M.S., Gu, X.Q.: A micromechanics-based model for estimating localized failure with effects of fabric anisotropy. Comp. Geotech. 50, 90–100 (2013)

    Article  Google Scholar 

  61. Lätzel, M., Luding, S., Herrmann, H.J.: Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell. Granul. Matter 2(3), 123–135 (2000)

    Article  Google Scholar 

  62. Tordesillas, A., Muthuswamy, M.: On the modeling of confined buckling of force chains. J. Mech. Phys. Solids 57(4), 706–727 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  63. Sykut, J., Molenda, M., Horabik, J.: DEM simulation of the packing structure and wall load in a 2-dimensional silo. Granul. Matter 10(4), 273–278 (2008)

    Google Scholar 

  64. Nicot, F., Sibille, L., Donze, F., Darve, F.: From microscopic to macroscopic second-order work in granular assemblies. Mech. Mater. 39, 664–684 (2007)

    Article  Google Scholar 

  65. Katagiri, J., Matsushima, T., Yamada, Y.: Simple shear simulation of 3D irregularly-shaped particles by image-based DEM. Granul. Matter 12(5), 491–497 (2010)

    Google Scholar 

  66. Lu, Y., Frost, D.: Three-dimensional DEM modeling of triaxial compression of sands. In: Proceeding of Geoshanghai 2010 International Conference, pp. 220–226 (2010)

  67. Minh, N.H., Cheng, Y.P.: A DEM investigation of the effect of particle-size distribution on one-dimensional compression. Géotechnique 63(1), 44–53 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The work presented in this paper is supported by the National Basic Research Program of China (973 Program, Grant No. 2012CB719803), National Natural Science Foundation of China (Grant Nos. 51308408, 11372228, 41272291 and 51238009) and Postdoctoral Science Foundation of China (Grant No. 2013M541543). The authors are also very grateful to the reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maosong Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, X., Huang, M. & Qian, J. DEM investigation on the evolution of microstructure in granular soils under shearing. Granular Matter 16, 91–106 (2014). https://doi.org/10.1007/s10035-013-0467-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0467-z

Keywords

Navigation