Skip to main content
Log in

Small-scale tests to investigate the dynamics of finite-sized dry granular avalanches and forces on a wall-like obstacle

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Small-scale laboratory tests investigate the force from finite-sized granular avalanches on a wall. First, the reference flows, in absence of the wall, were analysed in a wide range of slopes from a minimum angle for which no flow is possible to a critical angle for which the flow becomes very dilute. The changes in thickness and velocity over time exhibit transitions at the minimum slope angle and at intermediate slopes. Then the normal force exerted on a wall spanning the flow was measured. It is notable that the transitions detected in reference flows had a direct effect on the force. The maximum force was equal to the kinetic force of the incoming flow at high slopes, whereas it scaled like hydrostatic force at lower slopes. This is the effect of the dense-to-dilute transition. Furthermore, the maximum force at low slopes was found to be several times greater than the hydrostatic force of the incoming flow. This finding is explained by the considerable contribution of the stagnant zone formed upstream of the wall. Furthermore, the jamming transition was highlighted at the avalanche standstill by the collapse of the residual force on the wall when approaching the minimum angle for which no flow is possible. These results are useful for the design of protection dams against rapid mass movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbolini, M., Domaas, U., Faug, T., Gauer, P., Hákonardóttir, K.M., Harbitz, C.B., Issler, D., Jóhannesson, T., Lied, K., Naaim, M., Naaim-Bouvet, F., Rammer, L.: The design of avalanche protection dams. Recent practical and theoretical developments. Directorate-General for Research and Innovation, European Commission (2009)

  2. Bartelt P., McArdell B.W.: Instruments and methods: granulometric investigation of snow avalanches. J. Glaciol. 55, 829–833 (2009)

    Article  ADS  Google Scholar 

  3. Rognon P., Chevoir F., Bellot H., Ousset F., Naaim M., Coussot P.: Rheology of dense snow flows: inferences from steady state chute-flow experiments. J. Rheol. 52(3), 729–748 (2008)

    Article  ADS  Google Scholar 

  4. Sovilla B., McElwaine J., Schaer M., Vallet J.: Variation of deposition depth with slope angle in snow avalanches: measurements from vallée de la sionne. J. Geophys. Res. 115(F02016), 1–13 (2010)

    Google Scholar 

  5. GDRMiDi: On dense granular flows. Eur. Phys. J. E 1, 341–365 (2004)

    Article  Google Scholar 

  6. Pouliquen O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11(3), 542–548 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Dent J.D., Burrel K.J., Schmidt D.S., Louge M.Y., Adams E.E., Jazbutis T.G.: Density, velocity and friction measurement in a dry snow avalanche. Ann. Glaciol. 26, 247–252 (1998)

    ADS  Google Scholar 

  8. Rognon P., Roux J.N., Naaim M., Chevoir F.: Dense flows of bidisperse assemblies of disks down an inclined plane. Phys. Fluids 19(058101), 1–4 (2007)

    Google Scholar 

  9. Ridgway K., Rupp R.: Flow of granular materials down chutes. Chem. Proc. Eng. 51, 82 (1970)

    Google Scholar 

  10. Savage S.B., Jeffrey D.: Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92, 53–96 (1979)

    Article  ADS  MATH  Google Scholar 

  11. Wieghardt K.: Experiments on granular flows. Ann. Rev. Fluid Mech. 7, 89–114 (1975)

    Article  ADS  Google Scholar 

  12. Campbell C.S., Brennen C.: Chute flows of granular material: Some computer simulations. Trans. ASME 52, 172–178 (1985)

    Article  Google Scholar 

  13. Johnson P., Nott P., Jackson R.: Frictional-collisional equations of motion for particulate flows and their application to chutes. J. Fluid Mech. 210, 501–535 (1990)

    Article  ADS  Google Scholar 

  14. Patton J., Brennen C., Sabersky R.: Shear flows of rapidly flowing granular materials. J. Appl. Mech. 54, 801–805 (1987)

    Article  ADS  Google Scholar 

  15. Forterre Y., Pouliquen O.: Flows of dense granular media. Ann. Rev. Fluid Mech. 40, 1–24 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  16. Hogg A.J.: Two-dimensional granular slumps down slopes. Phys. Fluids 19(093301), 1–19 (2007)

    Google Scholar 

  17. Chiou M.C., Wang Y., Hutter K.: Influence of obstacles on rapid granular flows. Acta Mechanica 175, 105–122 (2005)

    Article  MATH  Google Scholar 

  18. Faug T., Gauer P., Lied K., Naaim M.: Overrun length of avalanches overtopping catching dams: cross-comparison of small-scale laboratory experiments and observations from full-scale avalanches. J. Geophys. Res. 113(F03009), 1–17 (2008)

    Google Scholar 

  19. Gray J.M.N.T., Tai Y.C., Noelle S.: Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. J. Fluid Mech. 491, 161–181 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Hákonardóttir K.M., Hogg A.J.: Oblique shocks in rapid granular flows. Phys. Fluids 17(077101), 1–10 (2005)

    Google Scholar 

  21. Pudasaini S.P., Hutter K., Hsiau S.S., Tai S.C., Wang Y., Katzenbach R.: Rapid flow of dry granular materials down inclined chutes impinging on rigid walls. Phys. Fluids 19(5), 053302 (2007)

    Article  ADS  Google Scholar 

  22. Pudasaini S.P., Kroener C.: Shock-waves in rapid flows of dense granular materials: theoretical predictions and experimental results. Phys. Rev. E 78(041308), 1–12 (2008)

    Google Scholar 

  23. Teufelsbauer H., Wang Y., Chiou M.C., Wu W.: Flow-obstacle interaction in rapid granular avalanches: Dem simulation and comparison with experiment. Granul. Matter 11(4), 209–220 (2009)

    Article  Google Scholar 

  24. Buchholtz V., Pöschel T.: Interaction of a granular stream with an obstacle. Granul. Matter 1, 33–41 (1998)

    Article  MATH  Google Scholar 

  25. Chanut B., Faug T., Naaim M.: Time-varying force from dense granular avalanches on a wall. Phys. Rev. E 82(041302), 1–12 (2010)

    Google Scholar 

  26. Faug T., Beguin R., Chanut B.: Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows. Phys. Rev. E 80(021305), 1–13 (2009)

    Google Scholar 

  27. Moriguchi S., Borja R., Yashima A., Sawada K.: Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech 4(1), 57–71 (2009)

    Article  Google Scholar 

  28. Jaeger H.M., Nagel S.R., Behringer R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)

    Article  ADS  Google Scholar 

  29. Schaefer M., Bugnion L., Kern M., Bartelt P.: Position dependent velocity profiles in granular avalanches. Granul. Matter 12(3), 327–336 (2010)

    Article  Google Scholar 

  30. Börzsönyi T., Ecke E., McElwaine J.N.: Patterns in flowing sand: understanding the physics of granular flow. Phys. Rev. L 103(178302), 1–4 (2009)

    Google Scholar 

  31. Louge M., Keast S.: On dense granular flows down flat frictional inclines. Phys. Fluids 13, 1213–1233 (2001)

    Article  ADS  Google Scholar 

  32. Caccamo, P., Faug, T., Bellot, H., Naaim-Bouvet, F.: Experiments on a dry granular avalanche impacting an obstacle: dead zone, granular jump and induced forces. In: WIT Transactions on The Built Environment, vol. 15, pp. 53–62 (2011)

  33. Gray J.M.N.T., Hutter K.: Pattern formation in granular avalanches. Contin. Mech. Thermodyn. 9, 341–345 (1997)

    Article  ADS  Google Scholar 

  34. Hákonardóttir, K.M.: The Interaction Between Snow Avalanches and Dams. Ph.D. thesis, University of Bristol (2004)

  35. Hákonardóttir K.M., Hogg A.J., Jóhannesson T., Tomasson G.G.: A laboratory study of the retarding effect of braking mounds. J. Glaciol. 49, 191–200 (2003)

    Article  Google Scholar 

  36. Naaim M., Faug T., Naaim-Bouvet F., Eckert N.: Return period calculation and passive structure design at the taconnaz avalanche path, france. Ann. Glaciol. 51(54), 89–97 (2010)

    Article  ADS  Google Scholar 

  37. Gray, J.M.N.T.: Particle size segregation in granular avalanches: a brief review of recent progress. In: AIP, IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flows (2010)

  38. Marks B., Einav I.: A cellular automaton for segregation during granular avalanches. Granul. Matter 13(3), 211–214 (2011)

    Article  Google Scholar 

  39. Savage S.B., Lun C.K.K.: Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311–335 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Faug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caccamo, P., Chanut, B., Faug, T. et al. Small-scale tests to investigate the dynamics of finite-sized dry granular avalanches and forces on a wall-like obstacle. Granular Matter 14, 577–587 (2012). https://doi.org/10.1007/s10035-012-0358-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0358-8

Keywords

Navigation