Skip to main content
Log in

Computational fluid dynamics applied to water and wastewater treatment facility modeling

  • Original papers
  • Published:
Environmental Engineering and Policy

Abstract

The major issues in water and wastewater industry are to meet quality requirements, to guarantee treatment process efficiency, to contain investment and operating costs. This implies the use of powerful predictive modeling and simulation tools which are able to account for the multiple interaction between all the water quality and process design parameters. Computational Fluid Dynamics modeling tools have already been widely used in other industries but their application in water industry is quite recent. This paper presents different applications of CFD modeling to the study of the hydro-dynamic and mass transfer performance of single- or two-phase flow reactors used in water and wastewater treatment. Numerical simulations, together with experimental measurements, have been performed on laboratory and full-scale plants in order to gain a better under-standing of the physical phenomena (mixing, interfacial transfer) occurring in these systems. Numerical simulations are systematically validated by experiments. The paper shows how CFD can be helpful in order to improve the design of existing water treatment plants and the process efficiency. In this scope, CFD enables designs more reliable and cost effective water treatment processes which remain basic environmental policy issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

projected volumetric interfacial area (m−1)

C :

concentration

C 0 :

concentration in the reactor after homogenization

CD :

drag coefficient

Db :

equivalent diameter of a spherical bubble having the same volume

E:

oblate bubble eccentricity

E ZL :

axial dispersion coefficient (m2/s)

Mo:

Morton number

P e :

Peclet number

t c :

circulation time

U L :

liquid velocity (m/s)

Re:

bubble Reynolds number

α :

local gas fraction

θ :

reduced time

References

  • Chisti MY (1989) Air-lift Bioreactors, ed. by Elsevier Sci.Publ., London

    Google Scholar 

  • Clift R, Grace JR, Weber ME (1978) Bubbles, Drops and Particles, Academic Press

  • Cockx A, Liné A, Roustan M, Do-Quang Z (1997a) Numerical simulation and physical modeling of the hydrodynamics in an air-lift internal loop reactor, Chemical Engineering Science, 52(21/22): 3787–3793

    Article  CAS  Google Scholar 

  • Cockx A, Liné A, Roustan M, Hébrard G (1997b) Simulation numérique et validation expérimentale de la dispersion axiale dans des contacteurs gaz-liquide, Récents Progrès en Génie des Procédés, Ed. Lavoisier Tec&Doc (53): 247–252

  • Cockx A, Liné A, Roustan M, Do-Quang Z (1997c) Simulation numérique de différents réacteurs gaz-liquide, Récents Progrès en Génie des Procédés, Ed. Lavoisier Tec&Doc (53): 229–234

  • Couvert A, Hébrard G, Liné A, Roustan M, Lazarova V, Do-Quang Z (1997) Etude hydrodynamique et modélisation d’un réacteur de type air-lift à paroi interne, Récents Progrès en Génie des Procédés, Ed. Lavoisier Tec&Doc (53): 241–246

  • Deutch E, Simonin O (1991) Large eddy simulation applied to the motion of particles in stationary homogeneous fluid trubulence, Turbulence Modification in Multiphase Flows, Proceedings of the first ASME/JSME Fluid Engineering Conf, FED 110: 35–42

    Google Scholar 

  • Ishii M, Zuber N (1979) Drag coefficient and relative velocity in bubbly, droplet or particulate flows, AIChE J., 25(5): 843–855

    Article  CAS  Google Scholar 

  • Karamanev DG (1994) Rise of gas bubbles in quiescent liquids, AIChE J., 40(8)::1418–1421

    Article  CAS  Google Scholar 

  • Lazarova V, Do-Quang Z, Cockx A, Hébrard G, Couvert A, Liné A, Roustan M, Bastoul D (1997) CFD modeling and experimental study of a new circulation bed bioreactor performances. International Conference on Bioreactor and Bioprocess Fluid Dynamics. BHR Group Ed. UK A.W. Nienow, pp 251–260

    Google Scholar 

  • Moore DW (1963) The boundary layer on a spherical gas bubble, J Fluid Mech 16: 161–176

    Article  Google Scholar 

  • Moore DW (1965) The velocity of rise of distorted gas bubbles in a liquid of small viscosity, J Fluid Mech 23(4): 749–766

    Article  Google Scholar 

  • Roustan M, Liné A (1996) Quels sont les critères d’extrapolation pour les systèmes d’aération. Tribune de l’Eau, 49(583-584): 53–58

    CAS  Google Scholar 

  • Simonin O, Viollet PL (1990) Modeling of turbulent two-phase jets loaded with discrete particles, Phase Interface Phenomena in Multiphase Flow, Hewitt G., Mayinger F., Riznic J.R., Eds, Hemisphere Publ. Corp., pp 259–270

  • Do-Quang Z (1993) Etudes expérimentale et numérique des performances des contacteurs de désinfection de l’eaupar le 147 chlore, Thèse de l’Institut National des Sciences Appliquées de Toulouse, France

  • Thai Van D, Minier JP, Simonin O, Freydier P, Olive J (1994) Multidimensional two-phase model computation of turbulent dispersed two-phase flows, Proceedings of the ASME Fluids Engineering Division Summer Meeting, Crowe CT, Johnson R, Prosperetti A, Sommerfeld M & Tsuji Y, Eds, FED-Vol 185, pp 277–291

  • Trambouze P (1996) CFD applied to process engineering. Revue de l’Institut Français du Pétrole, 51(2): 199–203

    Google Scholar 

  • van den Akker HEA (1997) On status and merits of computational fluid dynamics. 4th International Conference on Bioreactor and Bioprocess Fluid Dynamics. BHR Group.UK. Ed. A.W. Nienow, pp 407–432

    Google Scholar 

  • Wallis GB (1974) The terminal speed of single drops or bubles in an infinite medium. Int J Multiphase Flow 1: 491–511

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Do-Quang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do-Quang, Z., Cockx, A., Liné, A. et al. Computational fluid dynamics applied to water and wastewater treatment facility modeling. Environmental Engineering and Policy 1, 137–147 (1998). https://doi.org/10.1007/s100220050015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s100220050015

Keywords

Navigation