Skip to main content
Log in

Precipitation Intensification Increases Shrub Dominance in Arid, Not Mesic, Ecosystems

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Precipitation events have been predicted and observed to become fewer, but larger, as the atmosphere warms. Water-limited ecosystems are especially sensitive to changes in water cycling, yet evidence suggests that productivity may either increase or decrease in response to precipitation intensification. Interactions among climate, soil properties, and vegetation type may explain different responses, but this is difficult to experimentally test over large spatial scales. Simulation modeling may reveal the mechanisms through which climate, soils, and vegetation interact to affect plant growth. We use an individual-based plant ecohydrological model to simulate the effects of 25%, 50%, and 100% increases in precipitation event sizes on water cycling and shrub, grass, and forb biomass in 200 shrub-steppe sites spanning 651,000 km2 of the Intermountain West, USA. Simulations did not change annual precipitation amounts and were performed for 0, 3, and 5 °C warming. Larger precipitation events decreased evaporation and ‘pushed’ water into shrub root zones in arid and semi-arid sites, but ‘pushed’ water below shrub root zones in mesic sites resulting in increased shrub biomass in arid and semi-arid, but not mesic, sites. Positive effects of precipitation intensification on shrub growth partially counteracted negative effects of warming. Grasses and forbs showed no consistent response to precipitation intensification. Results indicate that increased precipitation intensity creates a competitive advantage for shrubs in arid and semi-arid sites. This advantage results in greater shrub relative abundance and suggests that precipitation intensification contributes to woody plant encroachment observed globally in arid and semi-arid ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data Availability

The version of the R program rSFSTEP2 used to run model simulations, including the input parameters used, is hosted on Zenodo (https://doi.org/10.5281/zenodo.5661688). The simulated data and code used for analyses are also hosted on Zenodo (https://doi.org/10.5281/zenodo.6629453).

References

  • Anadon JD, Sala OE, Turner BL, Bennett EM. 2014. Effect of woody-plant encroachment on livestock production in North and South America. Proc Natl Acad Sci 111:12948–12953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archer SR, Anderson EM, Predick KI, Schwinning S, Steidl RJ, Woods SR. 2017. Woody plant encroachment: Causes and consequences. In: Briske DD, Ed. Rangeland systems: Processes, management and challenges, . Cham: Springer. pp 25–84.

    Chapter  Google Scholar 

  • Bates JD, Svejcar T, Miller RF, Angell RA. 2006. The effects of precipitation timing on sagebrush steppe vegetation. J Arid Environ 64:670–97. http://linkinghub.elsevier.com/retrieve/pii/S0140196305001552

  • Berry RS, Kulmatiski A. 2017. A savanna response to precipitation intensity. PLoS One 12:1–18.

    Article  CAS  Google Scholar 

  • Bestelmeyer BT, Peters DPC, Archer SR, Browning DM, Okin GS, Schooley RL, Webb NP. 2018. The grassland–shrubland regime shift in the southwestern United States: Misconceptions and their implications for management. Bioscience 68:678–90. https://academic.oup.com/bioscience/article/68/9/678/5090179

  • Bradford JB, Schlaepfer DR, Lauenroth WK, Palmquist KA, Chambers JC, Maestas JD, Campbell SB. 2019. Climate-driven shifts in soil temperature and moisture regimes suggest opportunities to enhance assessments of dryland resilience and resistance. Front Ecol Evol 7:1–16.

    Article  Google Scholar 

  • Case MF, Staver AC. 2018. Soil texture mediates tree responses to rainfall intensity in African savannas. New Phytol 219:1363–1372.

    Article  PubMed  Google Scholar 

  • Cherlet M, Hutchinson C, Reynolds J, Hill J, Sommer S, von Maltitz G, Eds. 2018. World atlas of desertification. Luxembourg: Publication Office of the European Union.

    Google Scholar 

  • Coates PS, Prochazka BG, Ricca MA, Gustafson K Ben, Ziegler P, Casazza ML. 2017. Pinyon and juniper encroachment into sagebrush ecosystems impacts distribution and survival of greater sage-grouse. Rangel Ecol Manag 70:25–38. https://linkinghub.elsevier.com/retrieve/pii/S1550742416300811

  • Condon LE, Atchley AL, Maxwell RM. 2020. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat Commun. https://doi.org/10.1038/s41467-020-14688-0.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies KW, Bates JD, Miller RF. 2006. Vegetation characteristics across part of the Wyoming big sagebrush alliance. Rangel Ecol Manag 59:567–75. https://linkinghub.elsevier.com/retrieve/pii/S1550742406500818

  • Dolby GA. 2021. Towards a unified framework to study causality in Earth–life systems. Mol Ecol 30:5628–5642. https://doi.org/10.1111/mec.16142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Du H, Alexander LV, Donat MG, Lippmann T, Srivastava A, Salinger J, Kruger A, Choi G, He HS, Fujibe F, Rusticucci M, Nandintsetseg B, Manzanas R, Rehman S, Abbas F, Zhai P, Yabi I, Stambaugh MC, Wang S, Batbold A, Oliveira PT, Adrees M, Hou W, Zong S, Silva CMS, Lucio PS, Wu Z. 2019. Precipitation from persistent extremes is increasing in most regions and globally. Geophys Res Lett 46:6041–6049. https://doi.org/10.1029/2019GL081898.

    Article  Google Scholar 

  • Epstein HE, Lauenroth WK, Burke IC, Coffin DP. 1997. Productivity patterns of C3 and C4 functional types in the U.S. Great Plains. Ecology 78:722. http://www.jstor.org/stable/2266052?origin=crossref

  • Fierer N, Schimel JP. 2002. Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–87. https://linkinghub.elsevier.com/retrieve/pii/S003807170200007X

  • Gherardi LA, Sala OE. 2015. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc Natl Acad Sci 112:12735–12740. https://doi.org/10.1073/pnas.1506433112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gherardi LA, Sala OE. 2019. Effect of interannual precipitation variability on dryland productivity: A global synthesis. Glob Chang Biol 25:269–276.

    Article  PubMed  Google Scholar 

  • Good SP, Caylor KK. 2011. Climatological determinants of woody cover in Africa. Proc Natl Acad Sci 108:4902–4907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan K, Good SP, Caylor KK, Sato H, Wood EF, Li H. 2014. Continental-scale impacts of intra-seasonal rainfall variability on simulated ecosystem responses in Africa. Biogeosciences 11:6939–54. https://www.biogeosciences.net/11/6939/2014/

  • Hamilton BT, Roeder BL, Horner MA. 2019. Effects of Sagebrush Restoration and Conifer Encroachment on Small Mammal Diversity in Sagebrush Ecosystem. Rangel Ecol Manag 72:13–22. https://linkinghub.elsevier.com/retrieve/pii/S1550742418302653

  • Holdrege MC, Beard KH, Kulmatiski A. 2021. Woody plant growth increases with precipitation intensity in a cold semiarid system. Ecology 102:1–11. https://doi.org/10.1002/ecy.3212.

    Article  Google Scholar 

  • Holthuijzen MF, Veblen KE. 2016. Grazing effects on precipitation-driven associations between sagebrush and perennial grasses. West North Am Nat 76:313–325. https://doi.org/10.3398/064.076.0308.

    Article  Google Scholar 

  • Homyak PM, Blankinship JC, Slessarev EW, Schaeffer SM, Manzoni S, Schimel JP. 2018. Effects of altered dry season length and plant inputs on soluble soil carbon. Ecology 99:2348–2362. https://doi.org/10.1002/ecy.2473.

    Article  PubMed  Google Scholar 

  • Hou E, Litvak ME, Rudgers JA, Jiang L, Collins SL, Pockman WT, Hui D, Niu S, Luo Y. 2021. Divergent responses of primary production to increasing precipitation variability in global drylands. Glob Chang Biol 27:5225–5237. https://doi.org/10.1111/gcb.15801.

    Article  CAS  PubMed  Google Scholar 

  • Jordan SE, Palmquist KA, Bradford JB, Lauenroth WK. 2020. Soil water availability shapes species richness in mid-latitude shrub steppe plant communities. J Veg Sci 31:646–657.

    Article  Google Scholar 

  • Kleinhesselink AR, Adler PB. 2018. The response of big sagebrush (Artemisia tridentata) to interannual climate variation changes across its range. Ecology 99:1139–1149.

    Article  PubMed  Google Scholar 

  • Knapp AK, Beier C, Briske DD, Classen AT, Luo Y, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng E. 2008. Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58:811–821.

    Article  Google Scholar 

  • Kulmatiski A, Beard KH. In press. A modern two-layer hypothesis helps resolve the savanna problem. Ecol Lett.

  • Kulmatiski A, Beard KH. 2013. Woody plant encroachment facilitated by increased precipitation intensity. Nat Clim Chang 3:833–837. https://doi.org/10.1038/nclimate1904.

    Article  CAS  Google Scholar 

  • Lauenroth WK, Bradford JB. 2009. Ecohydrology of dry regions of the United States: precipitation pulses and intraseasonal drought. Ecohydrology 2:173–81. http://www3.interscience.wiley.com/journal/122653919/abstract

  • Lett MS, Knapp AK. 2005. Woody plant encroachment and removal in mesic grassland: Production and composition responses of herbaceous vegetation. Am Midl Nat 153:217–231.

    Article  Google Scholar 

  • Liu J, Ma X, Duan Z, Jiang J, Reichstein M, Jung M. 2020. Impact of temporal precipitation variability on ecosystem productivity. Wiley Interdiscip Rev Water 7:1–22.

    Article  Google Scholar 

  • Middleton N, Thomas DSG, Eds. 1997. World atlas of desertification, 2nd edn. London: Edward Arnold.

    Google Scholar 

  • Milchunas DG, Lauenroth WK. 1993. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol Monogr 63:327–366. https://doi.org/10.2307/2937150.

    Article  Google Scholar 

  • Myhre G, Alterskjær K, Stjern CW, Hodnebrog Ø, Marelle L, Samset BH, Sillmann J, Schaller N, Fischer E, Schulz M, Stohl A. 2019. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci Rep 9:16063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nearing MA, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernandez M, Le Bissonnais Y, Nichols MH, Nunes JP, Renschler CS, Souchère V, Van Oost K. 2005. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 61:131–154.

    Article  Google Scholar 

  • Noy-Meir I. 1973. Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51.

    Article  Google Scholar 

  • O’Gorman PA, Muller CJ. 2010. How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations? Environ Res Lett 5(2):025207.

    Article  Google Scholar 

  • Palmquist KA, Bradford JB, Martyn TE, Schlaepfer DR, Lauenroth WK. 2018. STEPWAT2: an individual-based model for exploring the impact of climate and disturbance on dryland plant communities. Ecosphere 9(8):e02394.

    Article  Google Scholar 

  • Palmquist KA, Schlaepfer DR, Renne RR, Torbit SC, Doherty KE, Remington TE, Watson G, Bradford JB, Lauenroth WK. 2021. Divergent climate change effects on widespread dryland plant communities driven by climatic and ecohydrological gradients. Glob Chang Biol 27:5169–5185. https://doi.org/10.1111/gcb.15776.

    Article  CAS  PubMed  Google Scholar 

  • Paruelo JM, Lauenroth WK. 1996. Relative abundance of plant functional types in grasslands and shrublands of North America. Ecol Appl 6:1212–1224. https://doi.org/10.2307/2269602.

    Article  Google Scholar 

  • Pascolini-Campbell M, Reager JT, Chandanpurkar HA, Rodell M. 2021. A 10 per cent increase in global land evapotranspiration from 2003 to 2019. Nature 593:543–547. https://doi.org/10.1038/s41586-021-03503-5.

    Article  CAS  PubMed  Google Scholar 

  • Pendergrass AG. 2018. What precipitation is extreme? Science 360:1072–1073.

    Article  CAS  PubMed  Google Scholar 

  • Pendergrass AG, Knutti R. 2018. The uneven nature of daily precipitation and its change. Geophys Res Lett 45:1–9. https://doi.org/10.1029/2018GL080298.

    Article  Google Scholar 

  • Prăvălie R. 2016. Drylands extent and environmental issues. A global approach. Earth-Science Rev 161:259–78. https://linkinghub.elsevier.com/retrieve/pii/S0012825216302239

  • R Core Team. 2020. R: A Language and Environment for Statistical Computing. https://www.r-project.org/

  • Remington TE, Deibert PA, Hanser SE, Davis DM, Robb LA, Welty JL. 2021. Sagebrush conservation strategy–challenges to sagebrush conservation. https://doi.org/10.3133/ofr20201125.

  • Renne RR, Bradford JB, Burke IC, Lauenroth WK. 2019. Soil texture and precipitation seasonality influence plant community structure in North American temperate shrub steppe. Ecology 100:1–12.

    Article  Google Scholar 

  • Renwick KM, Curtis C, Kleinhesselink AR, Schlaepfer D, Bradley BA, Aldridge CL, Poulter B, Adler PB. 2018. Multi-model comparison highlights consistency in predicted effect of warming on a semi-arid shrub. Glob Chang Biol 24:424–438.

    Article  PubMed  Google Scholar 

  • Rigge M, Homer C, Cleeves L, Meyer DK, Bunde B, Shi H, Xian G, Schell S, Bobo M. 2020. Quantifying western U.S. rangelands as fractional components with multi-resolution remote sensing and in situ data. Remote Sens 12:1–26.

    Article  Google Scholar 

  • Ritter F, Berkelhammer M, Garcia-Eidell C. 2020. Distinct response of gross primary productivity in five terrestrial biomes to precipitation variability. Commun Earth Environ 1:1–8. https://doi.org/10.1038/s43247-020-00034-1.

    Article  Google Scholar 

  • Sage RF. 2004. The evolution of C4 photosynthesis. New Phytol 161:341–370. https://doi.org/10.1111/j.1469-8137.2004.00974.x.

    Article  CAS  PubMed  Google Scholar 

  • Sala OE, Gherardi LA, Peters DPC. 2015. Enhanced precipitation variability effects on water losses and ecosystem functioning: differential response of arid and mesic regions. Clim Change 131:213–227.

    Article  CAS  Google Scholar 

  • Savage MJ, Ritchie JT, Bland WL, Dugas WA. 1996. Lower limit of soil water availability. Agron J 88:644–651. https://doi.org/10.2134/agronj1996.00021962008800040024x.

    Article  Google Scholar 

  • Schlaepfer DR, Lauenroth WK, Bradford JB. 2012. Ecohydrological niche of sagebrush ecosystems. Ecohydrology 5:453–466. https://doi.org/10.1002/eco.23.

    Article  Google Scholar 

  • Schwinning S, Sala OE. 2004. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–220.

    Article  PubMed  Google Scholar 

  • Seyfried MS, Schwinning S, Walvoord MA, Pockman WT, Newman BD, Jackson RB, Phillips FM. 2005. Ecohydrological control of deep drainage in arid and semiarid regions. Ecology 86:277–287.

    Article  Google Scholar 

  • Smith T, Huston M. 1989. A theory of the spatial and temporal dynamics of plant communities. Vegetatio 83:49–69. https://doi.org/10.1007/BF00031680.

    Article  Google Scholar 

  • Soil Survey Staff. 2012. Natural Resources Conservation Service, United States Department of Agriculture U.S. General Soil Map (STATSGO2). http://soildatamart.nrcs.usda.gov

  • Sturges DL. 1977. Soil water withdrawal and root characteristics of big sagebrush. Am Midl Nat 98:257. https://www.jstor.org/stable/2424978?origin=crossref

  • Thornton PE, Thornton MM, Mayer BW, Wei Y, Devarakonda R, Vose RS, Cook RB. 2016. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3. https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1328

  • Trenberth KE. 2011. Changes in precipitation with climate change. Clim Res 47:123–138.

    Article  Google Scholar 

  • U.S. Geological Survey Gap Analysis Program. 2016. GAP/LANDFIRE National Terrestrial Ecosystems 2011: U.S. Geological Survey. https://doi.org/10.5066/F7ZS2TM0

  • Walter H. 1971. Ecology of tropical and subtropical vegetation. Edinburgh: Oliver & Boyd.

    Google Scholar 

  • Wang J, Liu Q-Q, Chen R-R, Liu W-Z, Sainju UM. 2015. Soil carbon dioxide emissions in response to precipitation frequency in the Loess Plateau, China. Appl Soil Ecol 96:288–95. https://linkinghub.elsevier.com/retrieve/pii/S0929139315300792

  • Ward D, Wiegand K, Getzin S. 2013. Walter’s two-layer hypothesis revisited: Back to the roots! Oecologia 172:617–630.

    Article  PubMed  Google Scholar 

  • Wen S, Tian Y, Ouyang S, Song M, Li X, Zhang Y, Gao S, Xu X, Kuzyakov Y. 2022. High frequency of extreme precipitation increases Stipa grandis biomass by altering plant and microbial nitrogen acquisition. Biol Fertil Soils 58:63–75. https://doi.org/10.1007/s00374-021-01608-7.

    Article  CAS  Google Scholar 

  • West NE. 1983. Temperate deserts and semi-deserts. New York, NY: Elsevier.

    Google Scholar 

  • Wilcox KR, von Fischer JC, Muscha JM, Petersen MK, Knapp AK. 2015. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes. Glob Chang Biol 21:335–344.

    Article  PubMed  Google Scholar 

  • Xu X, Medvigy D, Rodriguez-Iturbe I. 2015. Relation between rainfall intensity and savanna tree abundance explained by water use strategies. Proc Natl Acad Sci U S A 112:12992–12996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Medvigy D, Trugman AT, Guan K, Good SP, Rodriguez-Iturbe I. 2018. Tree cover shows strong sensitivity to precipitation variability across the global tropics. Glob Ecol Biogeogr 27:450–460.

    Article  Google Scholar 

  • Yamori W, Hikosaka K, Way DA. 2014. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119:101–117. https://doi.org/10.1007/s11120-013-9874-6.

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Gentine P, Zhou S, Sullivan SC, Wang R, Zhang Y, Guo S. 2018. Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat Commun 9(1):1–10.

    Article  Google Scholar 

  • Zeppel MJB, Wilks JV, Lewis JD. 2014. Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences 11:3083–3093.

    Article  Google Scholar 

  • Zhang DH, Li XR, Zhang F, Zhang ZS, Le Chen Y. 2016. Effects of rainfall intensity and intermittency on woody vegetation cover and deep soil moisture in dryland ecosystems. J Hydrol 543:270–282. https://doi.org/10.1016/j.jhydrol.2016.10.003.

    Article  Google Scholar 

  • Zhou Y, Tingley MW, Case MF, Coetsee C, Kiker GA, Scholtz R, Venter FJ, Staver AC. 2021. Woody encroachment happens via intensification, not extensification, of species ranges in an African savanna. Ecol Appl 31:1–14.

    Article  Google Scholar 

  • Ziadat FM, Taimeh AY. 2013. Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. L Degrad Dev 24:582–590.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Utah State University Ecology Center and the Utah Agricultural Experiment Station and approved as journal paper #9532. KAP was supported by the National Science Foundation under Cooperative Agreement No. OIA-1458952. Thanks go to several ecologists and computer programmers who have contributed to the development of STEPWAT2 and rSFSTEP2: Donovan Miller, Ryan Murphy, Eric Murphy, Daniel Schlaepfer, Ashish Tiwari, Brenden Bernal, Karan Sodhi, Caitlin Andrews, and Chandler Hakaup.

Author information

Authors and Affiliations

Authors

Contributions

M.C.H, A.K., K.H.B., and K.A.P conceived the ideas. M.C.H., A.K., and K.A.P developed the experimental design; M.C.H and K.A.P conducted model simulations; M.C.H analyzed the data and led writing of the manuscript; K.H.B and A.K provided funding. All the authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Martin C. Holdrege.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3304 kb)

Supplementary file2 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holdrege, M.C., Kulmatiski, A., Beard, K.H. et al. Precipitation Intensification Increases Shrub Dominance in Arid, Not Mesic, Ecosystems. Ecosystems 26, 568–584 (2023). https://doi.org/10.1007/s10021-022-00778-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-022-00778-1

Keywords

Navigation