Skip to main content
Log in

A novel carbon/chitosan paste electrode for electrochemical detection of normetanephrine in the urine

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Normetanephrine is a marker for pheochromocytoma, a rare catecholamine-secreting and neuroendocrine tumor, that arises from sympathetic and parasympathetic paraganglia. In this work, a novel carbon/chitosan electrode paste was used for sensitive voltammetric determination of normetanephrine and dopamine in the presence of ascorbic acid and uric acid. The modified electrode has shown an increase in the effective area of up to 68%, well-separated oxidation peaks, and an excellent electrocatalytic activity. The electrochemical response characteristics were investigated by cyclic and differential pulse voltammetry. Interestingly, high sensitivity and selectivity in the linear range of normetanephrine, dopamine, ascorbic acid, and uric acid concentrations were observed. The present method was applied in the urine sample and satisfactory results were obtained showing that this electrode is very suitable in pharmaceutical and clinical preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Feng X, Liu Y, Kong Q, Ye J, Chen X, Hu J, Chen Z (2010) Direct electrochemistry of myoglobin immobilized on chitosan-wrapped rod-constructed ZnO microspheres and its application to hydrogen peroxide biosensing. J Solid State Electrochem 14(6):923–930. https://doi.org/10.1007/s10008-009-0883-5

    Article  CAS  Google Scholar 

  2. Siddiquee S, Yusof NA, Salleh AB, Tan SG, Abu Bakar F (2012) Development of electrochemical DNA biosensor for Trichoderma harzianum based on ionic liquid/ZnO nanoparticles/chitosan/gold electrode. J Solid State Electrochem 16(1):273–282. https://doi.org/10.1007/s10008-011-1322-y

    Article  CAS  Google Scholar 

  3. Jiang Y, Wang Y, Zhang Y, Shu X, Chen Z, Wu YC (2015) Controllable synthesis and capacitive performance of nitrogen-doped porous carbon from carboxymethyl chitosan by template carbonization method. J Solid State Electrochem 19(10):3087–3096. https://doi.org/10.1007/s10008-015-2906-8

    Article  CAS  Google Scholar 

  4. Peng H, Huang Z, Zheng Y, Chen W, Liu A, Lin X (2014) A novel nanocomposite matrix based on graphene oxide and ferrocene-branched organically modified sol–gel/chitosan for biosensor application. J Solid State Electrochem 18(7):1941–1949. https://doi.org/10.1007/s10008-014-2415-1

    Article  CAS  Google Scholar 

  5. Liu X, Luo L, Ding Y, Xu Y, Li F (2011) Hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase on γ-Al2O3 nanoparticles/chitosan film-modified electrode. J Solid State Electrochem 15(3):447–453. https://doi.org/10.1007/s10008-010-1120-y

    Article  CAS  Google Scholar 

  6. Shang K, Qiao Z, Sun B, Fan X, Ai S (2013) An efficient electrochemical disinfection of E. coli and S. aureus in drinking water using ferrocene–PAMAM–multiwalled carbon nanotubes–chitosan nanocomposite modified pyrolytic graphite electrode. J Solid State Electrochem 17(6):1685–1691. https://doi.org/10.1007/s10008-013-2031-5

    Article  CAS  Google Scholar 

  7. Wang L, Zhu H, Hou H, Zhang Z, Xiao X, Song Y (2012) A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on chitosan-graphene oxide/cysteamine-modified gold electrode. J Solid State Electrochem 16(4):1693–1700. https://doi.org/10.1007/s10008-011-1576-4

    Article  CAS  Google Scholar 

  8. Qi X, Gao H, Zhang Y, Wang X, Chen Y, Sun W (2012) Electrochemical DNA biosensor with chitosan-Co3O4 nanorod-graphene composite for the sensitive detection of Staphylococcus aureus nuc gene sequence. Bioelectrochemistry 88:42–47. https://doi.org/10.1016/j.bioelechem.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  9. Kim K, Kim JS, Lee S, Lee JK (2015) Employment of chitosan–linked iron oxides as mesoporous anode materials for improved lithium–ion batteries. Electrochim Acta 170:146–153. https://doi.org/10.1016/j.electacta.2015.04.132

    Article  CAS  Google Scholar 

  10. Sun W, Qi X, Chen Y, Liu S, Gao H (2011) Application of chitosan/Fe3O4 microsphere–graphene composite modified carbon ionic liquid electrode for the electrochemical detection of the PCR product of soybean lectin gene sequence. Talanta 87:106–112. https://doi.org/10.1016/j.talanta.2011.09.047

    Article  CAS  PubMed  Google Scholar 

  11. Sousa CP, de Oliveira RC, Freire TM, Fechine PBA, Salvador MA, Homem-de-Mello P, Morais S, de Lima-Neto P, Correia AN (2017) Chlorhexidine digluconate on chitosan-magnetic iron oxide nanoparticles modified electrode: electroanalysis and mechanistic insights by computational simulations. Sensors Actuators B Chem 240:417–425. https://doi.org/10.1016/j.snb.2016.08.181

    Article  CAS  Google Scholar 

  12. Fatoni A, Numnuam A, Kanatharana P, Limbut W, Thammakhet C, Thavarungkul P (2013) A highly stable oxygen-independent glucose biosensor based on a chitosan-albumin cryogel incorporated with carbon nanotubes and ferrocene. Sensors Actuators B Chem 185:725–734. https://doi.org/10.1016/j.snb.2013.05.056

    Article  CAS  Google Scholar 

  13. Huang K-J, Liu Y-J, Liu Y-M, Wang L-L (2014) Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol A determination. J Hazard Mater 276:207–215. https://doi.org/10.1016/j.jhazmat.2014.05.037

    Article  CAS  PubMed  Google Scholar 

  14. Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng C 33(4):1819–1841. https://doi.org/10.1016/j.msec.2013.01.010

    Article  CAS  Google Scholar 

  15. Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzym Microb Technol 35(2-3):126–139. https://doi.org/10.1016/j.enzmictec.2003.12.013

    Article  CAS  Google Scholar 

  16. Martins R, Bugalho MJ (2014) Paragangliomas/pheochromocytomas: clinically oriented genetic testing. Int J Endocrinol 2014:794187. https://doi.org/10.1155/2014/794187

    Article  PubMed  PubMed Central  Google Scholar 

  17. Neumann HPH, Bausch B, McWhinney SR, Bender BU, Gimm O, Franke G, Schipper J, Klisch J, Altehoefer C, Zerres K, Januszewicz A, Eng C, Smith WM, Munk R, Manz T, Glaesker S, Apel TW, Treier M, Reineke M, Walz MK, Hoang-Vu C, Brauckhoff M, Klein-Franke A, Klose P, Schmidt H, Maier-Woelfle M, Peçzkowska M, Szmigielski C, Eng C, Freiburg-Warsaw-Columbus Pheochromocytoma Study Group (2002) Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 346(19):1459–1466. https://doi.org/10.1056/NEJMoa020152

    Article  CAS  PubMed  Google Scholar 

  18. Lenders JWM, Pacak K, Walther MM, Linehan WM, Mannelli M, Friberg P, Keiser HR, Goldstein DS, Eisenhofer G (2002) Biochemical diagnosis of pheochromocytoma. JAMA 287(11):1427–1434

    Article  CAS  PubMed  Google Scholar 

  19. Waguespack SG, Rich T, Grubbs E, Ying AK, Perrier ND, Ayala-Ramirez M, Jimenez C (2010) A current review of the etiology, diagnosis, and treatment of pediatric pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 95(5):2023–2037. https://doi.org/10.1210/jc.2009-2830

    Article  CAS  PubMed  Google Scholar 

  20. Eisenhofer G, Lenders JWM, Goldstein DS, Mannelli M, Csako G, Walther MM, Brouwers FM, Pacak K (2005) Pheochromocytoma catecholamine phenotypes and prediction of tumor size and location by use of plasma free metanephrines. Clin Chem 51(4):735–744. https://doi.org/10.1373/clinchem.2004.045484

    Article  CAS  PubMed  Google Scholar 

  21. Fallon JH, Moore RY (1978) Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 180:80–545

    Google Scholar 

  22. Obata T (2002) Dopamine efflux by MPTP and hydroxyl radical generation. J Neural Transm 109(9):1159–1180. https://doi.org/10.1007/s00702-001-0683-2

    Article  CAS  PubMed  Google Scholar 

  23. Mohammadi M, Akhondzadeh S (2011) Advances and considerations in attention-deficit/hyperactivity disorder pharmacotherapy. Acta Med Iran 49(8):487–498

    CAS  PubMed  Google Scholar 

  24. Aurora RN, Kristo DA, Bista SR, Rowley JA, Zak RS, Casey KR, Lamm CI, Tracy SL, Rosenberg RS, American Academy of Sleep Medicine (2012) The treatment of restless legs syndrome and periodic limb movement disorder in adults—an update for 2012: practice parameters with an evidence-based systematic review and meta-analyses. Sleep 35(8):1039–1062. https://doi.org/10.5665/sleep.1988

    Article  PubMed  PubMed Central  Google Scholar 

  25. Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta, Gen Subj 1569(1-3):1–9. https://doi.org/10.1016/S0304-4165(01)00235-5

    Article  CAS  Google Scholar 

  26. Li Y, Lin X (2006) Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode. Sensors Actuators B Chem 115(1):134–139. https://doi.org/10.1016/j.snb.2005.08.022

    Article  CAS  Google Scholar 

  27. Noroozifar M, Khorasani-Motlagh M, Jahromi FZ, Rostami S (2013) Sensitive and selective determination of uric acid in real samples by modified glassy carbon electrode with holmium fluoride nanoparticles/multi-walled carbon nanotube as a new biosensor. Sensors Actuators B Chem 188:65–72. https://doi.org/10.1016/j.snb.2013.06.074

    Article  CAS  Google Scholar 

  28. Chauveinc L, Deniaud E, Plancher C et al (1999) Uterine sarcomas: the Curie Institut experience. Prognosis Factors Adjuvant Treat 237:232–237

    Google Scholar 

  29. Wong A, Razzino CA, Silva TA, Fatibello-Filho O (2016) Square-wave voltammetric determination of clindamycin using a glassy carbon electrode modified with graphene oxide and gold nanoparticles within a crosslinked chitosan film. Sensors Actuators B Chem 231:183–193. https://doi.org/10.1016/j.snb.2016.03.014

    Article  CAS  Google Scholar 

  30. Oliveira TMBF, Barroso MF, Morais S, Araújo M, Freire C, de Lima-Neto P, Correia AN, Oliveira MBPP, Delerue-Matos C (2014) Sensitive bi-enzymatic biosensor based on polyphenoloxidases–gold nanoparticles–chitosan hybrid film–graphene doped carbon paste electrode for carbamates detection. Bioelectrochemistry 98:20–29. https://doi.org/10.1016/j.bioelechem.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  31. Yang G, Zhao F, Zeng B (2014) Facile fabrication of a novel anisotropic gold nanoparticle–chitosan–ionic liquid/graphene modified electrode for the determination of theophylline and caffeine. Talanta 127:116–122. https://doi.org/10.1016/j.talanta.2014.03.029

    Article  CAS  PubMed  Google Scholar 

  32. Maringa A, Mugadza T, Antunes E, Nyokong T (2013) Characterization and electrocatalytic behaviour of glassy carbon electrode modified with nickel nanoparticles towards amitrole detection. J Electroanal Chem 700:86–92. https://doi.org/10.1016/j.jelechem.2013.04.022

    Article  CAS  Google Scholar 

  33. Khamlichi RE, Bouchta D, Anouar EH et al (2017) A novel L-leucine modified sol-gel-carbon electrode for simultaneous electrochemical detection of homovanillic acid, dopamine and uric acid in neuroblastoma diagnosis. Mater Sci Eng C 71:870–878. https://doi.org/10.1016/j.msec.2016.10.076

    Article  CAS  Google Scholar 

  34. Curulli A (2009) Electrochemical direct determination of catecholamines for the early detection of neurodegenerative diseases. Sensors 9(4):2437–2445. https://doi.org/10.3390/s90402437

    Article  CAS  PubMed  Google Scholar 

  35. Zhang L, Jia J, Zou X, Dong S (2004) Simultaneous determination of dopamine and ascorbic acid at an in-site functionalized self-assembled monolayer on gold electrode. Electroanalysis 16(17):1413–1418. https://doi.org/10.1002/elan.200302965

    Article  CAS  Google Scholar 

  36. Suzuki A, Ivandini TA, Yoshimi K, Fujishima A, Oyama G, Nakazato T, Hattori N, Kitazawa S, Einaga Y (2007) Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal Chem 79(22):8608–8615. https://doi.org/10.1021/ac071519h

    Article  CAS  PubMed  Google Scholar 

  37. Shang L, Dong S (2008) Detection of neurotransmitters by a light scattering technique based on seed-mediated growth of gold nanoparticles. Nanotechnology 19(9):095502–095508. https://doi.org/10.1088/0957-4484/19/9/095502

    Article  CAS  PubMed  Google Scholar 

  38. Amatore C, Saveant JM (1978) Do ECE mechanisms occur in conditions where they could be characterized by electrochemical kinetic techniques? J Electroanal Chem 86(1):227–232. https://doi.org/10.1016/S0022-0728(78)80371-4

    Article  CAS  Google Scholar 

  39. Dryhurst G, Elving PJ (1968) Polarographic reduction of oxaluric acid. Analytical application. Anal Chem 40(3):492–495. https://doi.org/10.1021/ac60259a014

    Article  CAS  Google Scholar 

  40. Choukairi M, Bouchta D, Bounab L, Ben atyah M, Elkhamlichi R, Chaouket F, Raissouni I, Rodriguez IN (2015) Electrochemical detection of uric acid and ascorbic acid: application in serum. J Electroanal Chem 758:117–124. https://doi.org/10.1016/j.jelechem.2015.10.012

    Article  CAS  Google Scholar 

  41. Tsierkezos NG, Ritter U (2012) Oxidation of dopamine on multi-walled carbon nanotubes. J Solid State Electrochem 16(6):2217–2226. https://doi.org/10.1007/s10008-012-1647-1

    Article  CAS  Google Scholar 

  42. Zhang L, Shi Z, Lang Q (2011) Fabrication of poly(orthanilic acid)-multiwalled carbon nanotubes composite film-modified glassy carbon electrode and its use for the simultaneous determination of uric acid and dopamine in the presence of ascorbic acid. J Solid State Electrochem 15(4):801–809. https://doi.org/10.1007/s10008-010-1159-9

    Article  CAS  Google Scholar 

  43. Yang S, Li G, Yang R, Xia M, Qu L (2011) Simultaneous voltammetric detection of dopamine and uric acid in the presence of high concentration of ascorbic acid using multi-walled carbon nanotubes with methylene blue composite film-modified electrode. J Solid State Electrochem 15(9):1909–1918. https://doi.org/10.1007/s10008-010-1210-x

    Article  CAS  Google Scholar 

  44. Pecková K, Musilová J, Barek J (2009) Boron-doped diamond film electrodes—new tool for voltammetric determination of organic substances. Crit Rev Anal Chem 39(3):148–172. https://doi.org/10.1080/10408340903011812

    Article  CAS  Google Scholar 

  45. Sheng Z-H, Zheng X-Q, Xu J-Y, Bao WJ, Wang FB, Xia XH (2012) Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 34(1):125–131. https://doi.org/10.1016/j.bios.2012.01.030

    Article  CAS  PubMed  Google Scholar 

  46. Zheng X, Guo Y, Zheng J, Zhou X, Li Q, Lin R (2015) Simultaneous determination of ascorbic acid, dopamine and uric acid using poly(l-leucine)/{DNA} composite film modified electrode. Sensors Actuators B Chem 213:188–194. https://doi.org/10.1016/j.snb.2015.02.044

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Aisha Attar, University of California, Irvine, USA, and to Engr. Sara Elliazidi, University Abdelmalek Essaâdi, Tetouan, Morocco, for all their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Redouan El Khamlichi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Khamlichi, R., Bouchta, D., Ben Atia, M. et al. A novel carbon/chitosan paste electrode for electrochemical detection of normetanephrine in the urine. J Solid State Electrochem 22, 1983–1994 (2018). https://doi.org/10.1007/s10008-018-3906-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3906-2

Keywords

Navigation