Skip to main content
Log in

An efficient electrochemical disinfection of E. coli and S. aureus in drinking water using ferrocene–PAMAM–multiwalled carbon nanotubes–chitosan nanocomposite modified pyrolytic graphite electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work reported an efficient electrochemical treatment for drinking water disinfection using a pyrolytic graphite electrode modified with ferrocenyl tethered poly(amidoamine) dendrimers–multiwalled carbon nanotubes–chitosan nanocomposite. The influence parameters of electrochemical disinfection of Escherichia coli and Staphylococcus aureus, such as applied potential and sterilization time, were investigated. Further investigation indicated that almost all (99.99 %) of the initial bacteria were killed after applying a low potential of 0.4 V for 10 min. During the electrochemical disinfection process, the oxidized form of ferrocene was formed on electrode, which played a key role in the disinfection towards E. coli and S. aureus. Hence, the proposed method may provide potential application for the disinfection of drinking water.

Schematic diagram of electrochemical disinfection progress

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shang K, Ai S, Ma Q, Tang T, Yin H, Han H (2011) Desalination 278:173–178

    Article  CAS  Google Scholar 

  2. Ren J, Wang W, Zhang L, Chang J, Hu S (2009) Catal Commun 10:1940–1943

    Article  CAS  Google Scholar 

  3. Särkkä H, Vepsäläinen M, Pulliainen M, Sillanpää M (2008) J Hazard Mater 156:208–213

    Article  Google Scholar 

  4. Ghernaout D, Badis A, Kellil A, Ghernaout B (2008) Desalination 219:118–125

    Article  CAS  Google Scholar 

  5. Hernlem BJ, Tsai LS (2000) J Food Sci 65:834–837

    Article  CAS  Google Scholar 

  6. Jeong J, Kim JY, Cho M, Choi W, Yoon J (2007) Chemosphere 67:652–659

    Article  CAS  Google Scholar 

  7. Schmalz V, Dittmar T, Haaken D, Worch E (2009) Water Res 43:5260–5266

    Article  CAS  Google Scholar 

  8. Okochi M, Matsunaga T (1997) Electrochim Acta 42:3247–3250

    Article  CAS  Google Scholar 

  9. Okochi M, Nakamura N, Matsunaga T (2000) Electrochim Acta 45:2917–2921

    Article  CAS  Google Scholar 

  10. AbasIyanIk MF, Senel M (2010) J Electroanal Chem 639:21–26

    Article  CAS  Google Scholar 

  11. Sun X, Li Z, Cai Y, Wei Z, Fang Y, Ren G, Huang Y (2011) Electrochim Acta 56:1117–1122

    Article  CAS  Google Scholar 

  12. Chen Q, Ai S, Ma Q, Yin H (2010) J Appl Electrochem 40:1379–1385

    Article  CAS  Google Scholar 

  13. Das J, Aziz MA, Yang H (2006) J Am Chem Soc 128:16022–16023

    Article  CAS  Google Scholar 

  14. Chen Q, Ai S, Fan H, Cai J, Ma Q, Zhu X, Yin H (2010) J Solid State Electrochem 14:1681–1688

    Article  CAS  Google Scholar 

  15. Ma Q, Ai S, Yin H, Chen Q, Tang T (2010) Electrochim Acta 55:6687–6694

    Article  CAS  Google Scholar 

  16. Zhu X, Ai S, Chen Q, Yin H, Xu J (2009) Electrochem Commun 11:1543–1546

    Article  CAS  Google Scholar 

  17. Karnicka K, Miecznikowski K, Kowalewska B, Skunik M, Opallo M, Rogalski J, Schuhmann W, Kulesza PJ (2008) Anal Chem 80:7643–7648

    Article  CAS  Google Scholar 

  18. Yin H, Zhou Y, Xu J, Ai S, Cui L, Zhu L (2010) Anal Chim Acta 659:144–150

    Article  CAS  Google Scholar 

  19. Zeng YL, Huang YF, Jiang JH, Zhang XB, Tang CR, Shen GL, Yu RQ (2007) Electrochem Commun 9:185–190

    Article  Google Scholar 

  20. Furtado CA, Kim UJ, Gutierrez HR, Pan L, Dickey EC, Eklund PC (2004) J Am Chem Soc 126:6095–6105

    Article  CAS  Google Scholar 

  21. Yoon HC, Hong MY, Kim HS (2000) Anal Chem 72:4420–4427

    Article  CAS  Google Scholar 

  22. Ma Q, Liu T, Tang T, Yin H, Ai S (2011) Electrochim Acta 56:8278–8284

    Article  CAS  Google Scholar 

  23. Qiu JD, Liang RP, Wang R, Fan LX, Chen YW, Xia XH (2009) Biosens Bioelectron 25:852–857

    Article  CAS  Google Scholar 

  24. Xu J, Tian Y, Peng R, Xian Y, Ran Q, Jin L (2009) Electrochem Commun 11:1972–1975

    Article  CAS  Google Scholar 

  25. Yin H, Ma Q, Zhou Y, Ai S, Zhu L (2010) Electrochim Acta 55:7102–7108

    Article  CAS  Google Scholar 

  26. Yin H, Zhou Y, Ma Q, Ai S, Chen Q, Zhu L (2010) Talanta 82:1193–1199

    Article  CAS  Google Scholar 

  27. Hu W, Lu Z, Liu Y, Li CM (2010) Langmuir 26:8386–8391

    Article  CAS  Google Scholar 

  28. Thakur A, Adarsh NN, Chakraborty A, Devi M, Ghosh S (2010) J Organomet Chem 695:1059–1064

    Article  CAS  Google Scholar 

  29. Okochi M, Nakamura N, Matsunaga T (1999) Electrochim Acta 44:3795–3799

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 21075078, 21105056) and the Natural Science Foundation of Shandong province, China (no. ZR2010BM005, ZR2011BQ001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyun Ai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, K., Qiao, Z., Sun, B. et al. An efficient electrochemical disinfection of E. coli and S. aureus in drinking water using ferrocene–PAMAM–multiwalled carbon nanotubes–chitosan nanocomposite modified pyrolytic graphite electrode. J Solid State Electrochem 17, 1685–1691 (2013). https://doi.org/10.1007/s10008-013-2031-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2031-5

Keywords

Navigation