Skip to main content
Log in

Effect of the soft and hard segment composition on the properties of waterborne polyurethane-based solid polymer electrolyte for lithium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A series of waterborne polyurethane (WPU) with various hard segment and soft segment content were synthesized by hexamethylene diisocyanate (HDI), polyethylene glycol (PEG), dimethylol propionic acid (DMPA), and diethylene glycol (DEG). An increase in hard segment content decreased the crystallinity and thermal stability of WPU. Solid polymer electrolytes (SPEs) were prepared by complexing the as-prepared WPU with LiTFSI. The ionic conductivity increased first with the increasing of the hard segment content and then decreased. The compatibility of WPU-based SPEs with lithium electrode was influenced by the hard segment content. The electrochemical stability windows for all the SPEs have reached around 5.0 V (vs. Li+/Li) at 60 °C. A maximum ion conductivity of 5.14 × 10−5 S cm−1 at 25 °C was found for WPU12-20%Li and 1.29 × 10−3 S cm−1 at 60 °C for WPU12-25%Li. All-solid-state LiFePO4/SPE/Li battery based on WPU12-20%Li electrolyte delivered discharge specific capacities of 159 and 162 mAh g−1 under 60 and 80 °C at 0.1 C, respectively. Tuning the appropriate hard and soft segment composition of WPU may ultimately lead to the successful use of WPU-based SPEs for all-solid-state lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shim J, Kim DG, Kim HJ, Lee JH, Lee JC (2015) Polymer composite electrolytes having core–shell silica fillers with anion-trapping boron moiety in the shell layer for all-solid-state lithium-ion batteries. ACS Appl Mater Interfaces 7(14):7690–7701. https://doi.org/10.1021/acsami.5b00618

    Article  CAS  Google Scholar 

  2. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386. https://doi.org/10.1016/j.nanoen.2017.01.028

    Article  CAS  Google Scholar 

  3. Wang A, Xu H, Zhou Q, Liu X, Li Z, Gao R, Liu X, Zhang L (2017) Electrochemical performances of a new solid composite polymer electrolyte based on hyperbranched star polymer and ionic liquid for lithium-ion batteries. J Solid State Electrochem 21(8):2355–2364. https://doi.org/10.1007/s10008-017-3582-7

    Article  CAS  Google Scholar 

  4. Swiderska-Mocek A, Jakobczyk P, Lewandowski A (2017) Kinetic and galvanostatic studies of a polymer electrolyte for lithium-ion batteries. J Solid State Electrochem 21(10):2825–2831. https://doi.org/10.1007/s10008-017-3609-0

    Article  CAS  Google Scholar 

  5. Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4(26):10038–10069. https://doi.org/10.1039/C6TA02621D

    Article  CAS  Google Scholar 

  6. Yan X, Li Z, Wen Z, Han W (2017) Li/Li7La3Zr2O12/LiFePO4 all-solid-state battery with ultrathin nanoscale solid electrolyte. J Phys Chem C 121(3):1431–1435. https://doi.org/10.1021/acs.jpcc.6b10268

    Article  CAS  Google Scholar 

  7. He D, Cho SY, Kim DW, Lee C, Kang Y (2012) Enhanced ionic conductivity of semi-IPN solid polymer electrolytes based on star-shaped oligo(ethyleneoxy)cyclotriphosphazenes. Macromolecules 45(19):7931–7938. https://doi.org/10.1021/ma3016745

    Article  CAS  Google Scholar 

  8. Ma T, Yu X, Cheng X, Li H, Zhu W, Qiu X (2017) Confined solid electrolyte interphase growth space with solid polymer electrolyte in hollow structured silicon anode for Li-Ion batteries. ACS Appl Mater Interfaces 9(15):13247–13254. https://doi.org/10.1021/acsami.7b03046

    Article  CAS  Google Scholar 

  9. Zhai H, Xu P, Ning M, Cheng Q, Mandal J, Yang Y (2017) A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett 17(5):3182–3187. https://doi.org/10.1021/acs.nanolett.7b00715

    Article  CAS  Google Scholar 

  10. Vélez JF, Aparicio M, Mosa J (2016) Covalent silica-PEO-LiTFSI hybrid solid electrolytes via sol-gel for Li-ion battery applications. Electrochim Acta 213:831–841. https://doi.org/10.1016/j.electacta.2016.07.146

    Article  Google Scholar 

  11. Zhen R, Chi Q, Wang X, Yang K, Jiang Y, Li FF, Xue B (2016) Crystallinity, ion conductivity, and thermal and mechanical properties of poly(ethylene oxide)-illite nanocomposites with exfoliated illite as a filler. J Appl Polym Sci 133(47):4426. https://doi.org/10.1002/APP.44226

    Article  Google Scholar 

  12. Polu AR, Rhee HW (2017) Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int J Hydrog Energy 42(10):7212–7219. https://doi.org/10.1016/j.ijhydene.2016.04.160

    Article  CAS  Google Scholar 

  13. Xue Z, Heb D, Xie X (2015) Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A 3(38):19218–19253. https://doi.org/10.1039/C5TA03471J

    Article  CAS  Google Scholar 

  14. Shim J, Lee JW, Bae KY, Kim HJ, Yoon WY, Lee JC (2017) Dendrite suppression by synergistic combination of solid polymer electrolyte crosslinked with natural terpenes and lithium-powder anode for lithium-metal batteries. ChemSusChem 10(10):2274–2283. https://doi.org/10.1002/cssc.201700408

    Article  CAS  Google Scholar 

  15. Shim J, Kim L, Kim HJ, Jeong D, Lee JH, Lee JC (2017) All-solid-state lithium metal battery with solid polymer electrolytes based on polysiloxane crosslinked by modified natural gallic acid. Polymer 122:222–231. https://doi.org/10.1016/j.polymer.2017.06.074

    Article  CAS  Google Scholar 

  16. Tsao CH, Ueda M, Kuo PL (2016) Synthesis and characterization of polymer electrolytes based on cross-linked phenoxy-containing polyphosphazenes. J Polym Sci Part A: Polym Chem 54(3):352–358. https://doi.org/10.1002/pola.27781

    Article  CAS  Google Scholar 

  17. Liu X, Ding G, Zhou X, Li S, He W, Chai J, Pang C, Liu Z, Cui G (2017) An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries. J Mater Chem A 5(22):11124–11130. https://doi.org/10.1039/C7TA02423A

    Article  CAS  Google Scholar 

  18. He W, Cui Z, Liu X, Cui Y, Chai J, Zhou X, Liu Z, Cui G (2017) Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries. Electrochim Acta 225:151–159. https://doi.org/10.1016/j.electacta.2016.12.113

    Article  CAS  Google Scholar 

  19. Liu L, Wu X, Li T (2014) Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length. J Power Sources 249:397–404. https://doi.org/10.1016/j.jpowsour.2013.10.116

    Article  CAS  Google Scholar 

  20. Mustapa SR, Aung MM, Ahmad A, Mansor A, TianKhoon L (2016) Preparation and characterization of jatropha oil-based polyurethane as non-aqueous solid polymer electrolyte for electrochemical devices. Electrochim Acta 222:293–302. https://doi.org/10.1016/j.electacta.2016.10.173

    Article  CAS  Google Scholar 

  21. Khatoon H, Ahmad S (2017) A review on conducting polymer reinforced polyurethane composites. J Ind Eng Chem 53:1–22. https://doi.org/10.1016/j.jiec.2017.03.036

    Article  CAS  Google Scholar 

  22. Karimi MB, Khanbabaei G, Sadeghi GMM (2017) Vegetable oil-based polyurethane membrane for gas separation. J Membr Sci 527:198–206. https://doi.org/10.1016/j.memsci.2016.12.008

    Article  CAS  Google Scholar 

  23. Lee YH, Kim JS, Noh J, Lee I, Kim HJ, Choi S, Seo J, Jeon S, Kim TC, Lee JY, Choi JW (2013) Wearable textile battery rechargeable by solar energy. Nano Lett 13(11):5753–5761. https://doi.org/10.1021/nl403860k

    Article  CAS  Google Scholar 

  24. Milroy C, Manthiram AA (2016) An elastic, conductive, electroactive nanocomposite binder for flexible sulfur cathodes in lithium-sulfur batteries. Adv Mater 28(44):9744–9751. https://doi.org/10.1002/adma.201601665

    Article  CAS  Google Scholar 

  25. Liu K, Liu M, Cheng J, Dong S, Wang C, Wang Q, Zhou X, Sun H, Chen X, Cui G (2016) Novel cellulose/polyurethane composite gel polymer electrolyte for high performance lithium batteries. Electrochim Acta 215:261–266. https://doi.org/10.1016/j.electacta.2016.08.076

    Article  CAS  Google Scholar 

  26. Porcarelli L, Manojkumar K, Sardon H, Llorente O, Shaplov AS, Vijayakrishna K, Gerbaldi C, Mecerreyes M (2017) Single ion conducting polymer electrolytes based on versatile polyurethanes. Electrochim Acta 241:526–534. https://doi.org/10.1016/j.electacta.2017.04.132

    Article  CAS  Google Scholar 

  27. Chang Z, Zhang M, Hudson AG, Orler EB, Moore RB, Wilkes GL, Turner SR (2013) Synthesis and properties of segmented polyurethanes with triptycene units in the hard segment. Polymer 54(26):6910–6917. https://doi.org/10.1016/j.polymer.2013.10.028

    Article  CAS  Google Scholar 

  28. Wang S, Jeung S, Min K (2010) The effects of anion structure of lithium salts on the properties of in-situ polymerized thermoplastic polyurethane electrolytes. Polymer 51(13):2864–2871. https://doi.org/10.1016/j.polymer.2010.04.022

    Article  CAS  Google Scholar 

  29. Wang S, Min K (2010) Solid polymer electrolytes of blends of polyurethane and polyether modified polysiloxane and their ionic conductivity. Polymer 51(12):2621–2628. https://doi.org/10.1016/j.polymer.2010.04.038

    Article  CAS  Google Scholar 

  30. Bao J, Tao C, Yu R, Gao M, Huang Y, Chen CH (2017) Solid polymer electrolyte based on waterborne polyurethane for all-solid-state lithium ion batteries. J Appl Polym Sci 134(48):45554. https://doi.org/10.1002/app.45554

    Article  Google Scholar 

  31. Tan R, Gao R, Zhao Y, Zhang M, Xu J, Yang J, Pan F (2016) Novel organic–inorganic hybrid electrolyte to enable LiFePO4 quasi-solid-state Li-ion batteries performed highly around room temperature. ACS Appl Mater Interfaces 8(45):31273–31280. https://doi.org/10.1021/acsami.6b09008

    Article  CAS  Google Scholar 

  32. Hood MA, Wang B, Sands JM, Scala JJL, Beyer FL, Li CY (2010) Morphology control of segmented polyurethanes by crystallization of hard and soft segments. Polymer 51(10):2191–2198. https://doi.org/10.1016/j.polymer.2010.03.027

    Article  CAS  Google Scholar 

  33. Moins S, Martins JC, Krumpmann A, Lemaur V, Cornil J, Delbosc N, Decroly A, Dubois P, Lazzaroni R, Gohy JF, Coulembier O (2017) Chem Commun 53(51):6899–6902. https://doi.org/10.1039/C7CC02385E

    Article  CAS  Google Scholar 

  34. Zhao Y, Huang Z, Chen S, Chen B, Yang J, Zhang Q, Ding F, Chen Y, Xu X (2016) A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ionics 295:65–71. https://doi.org/10.1016/j.ssi.2016.07.013

    Article  CAS  Google Scholar 

  35. Skarja GA, Woodhouse KA (2000) Structure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender. J Appl Polym Sci 75(12):1522–1534. https://doi.org/10.1002/(SICI)1097-4628(20000321)75:12<1522::AID-APP11>3.0.CO;2-A

    Article  CAS  Google Scholar 

  36. Ramesh S, Liew CW (2013) Dielectric and FTIR studies on blending of [xPMMA–(1−x)PVC] with LiTFSI. Measurement 46(5):1650–1656. https://doi.org/10.1016/j.measurement.2013.01.003

    Article  Google Scholar 

  37. Bar N, Basak P, Tsur Y (2017) Vibrational and impedance spectroscopic analyses of semi-interpenetrating polymer networks as solid polymer electrolytes. Phys Chem Chem Phys 19(22):14615–14624. https://doi.org/10.1039/C7CP00129K

    Article  CAS  Google Scholar 

  38. Prabakaran P, Manimuthu RP, Gurusamy S (2017) Influence of barium titanate nanofiller on PEO/PVdF-HFP blend-based polymer electrolyte membrane for Li-battery applications. J Solid State Electrochem 21(5):1273–1285. https://doi.org/10.1007/s10008-016-3477-z

    Article  CAS  Google Scholar 

  39. Zhou X, Fang C, Lei W, Su J, Li L, Li Y (2017) Thermal and Crystalline Properties of Waterborne Polyurethane by in situ water reaction process and the potential application as biomaterial. Prog Org Coat 104:1–10. https://doi.org/10.1016/j.porgcoat.2016.12.001

    Article  CAS  Google Scholar 

  40. Yoshimoto N, Nomura H, Shirai T, Ishikawa M, Morita M (2004) Ionic conductance of gel electrolyte using a polyurethane matrix for rechargeable lithium batteries. Electrochim Acta 50(2-3):275–279. https://doi.org/10.1016/j.electacta.2004.01.128

    Article  CAS  Google Scholar 

  41. Panwiriyarat W, Tanrattanakul V, Pilard JF, Pasetto P, Khaokong C (2013) Effect of the diisocyanate structure and the molecular weight of diols on bio-based polyurethanes. J Appl Polym Sci 130(1):453–462. https://doi.org/10.1002/app.39170

    Article  CAS  Google Scholar 

  42. Zhang J, Ma C, Xia Q, Liu J, Ding Z, Xu M, Chen L, Wei W (2016) Composite electrolyte membranes incorporating viscous copolymers with cellulose for high performance lithium-ion batteries. J Membr Sci 497:259–269. https://doi.org/10.1016/j.memsci.2015.09.056

    Article  CAS  Google Scholar 

  43. Zhang H, Liu C, Zheng L, Xu F, Feng W, Li H, Huang X, Armand M, Nie J, Zhou Z (2014) Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte. Electrochim Acta 133:529–538. https://doi.org/10.1016/j.electacta.2014.04.099

    Article  CAS  Google Scholar 

  44. Yen MS, Kuo SC (1998) PCL-PEG-PCL triblock ester-ether copolydiol-based waterborne polyurethane. II. Effect of NCO/OH mole ratio and DMPA content on the physical properties. J Appl Polym Sci 67(7):1301–1311. https://doi.org/10.1002/(SICI)1097-4628(19980214)67:7<1301::AID-APP21>3.0.CO;2-2

    Article  CAS  Google Scholar 

  45. Wen TC, Wang YJ, Cheng TT, Yang CH (1999) Polymer 14:3979–3988

    Article  Google Scholar 

  46. Ciosek M, Sannier L, Siekierski M, Golodnitsky D, Peled E, Scrosati B, Glowinkowski S (2007) Electrochim Acta 53(4):1409–1416. https://doi.org/10.1016/j.electacta.2007.03.037

    Article  CAS  Google Scholar 

  47. Verma ML, Minakshi M, Singh NK (2014) Synthesis and characterization of solid polymer electrolyte based on activated carbon for solid state capacitor. Electrochim Acta 137:497–503. https://doi.org/10.1016/j.electacta.2014.06.039

    Article  CAS  Google Scholar 

  48. Ng STC, Forsyth M, MacFarland DR, Garcia M, Smith ME, Strange JH (1998) Composition effects in polyetherurethane-based solid polymer electrolytes. Polymer 39(25):6261–6268. https://doi.org/10.1016/S0032-3861(98)00153-0

    Article  CAS  Google Scholar 

  49. Wen TC, Wu MS, Yang CH (1999) Spectroscopic investigations of poly(oxypropylene)glycol-based waterborne polyurethane doped with lithium perchlorate. Macromolecules 32(8):2712–2720. https://doi.org/10.1021/ma9804489

    Article  CAS  Google Scholar 

  50. Ferry A, Jacobsson P, Heumen JDV, Stevens JR (1996) Raman, infra-red and d.s.c. studies of lithium coordination in a thermoplastic polyurethane. Polymer 37(5):737–744. https://doi.org/10.1016/0032-3861(96)87248-X

    Article  CAS  Google Scholar 

  51. Zhang J, Ma C, Liu J, Chen L, Pan A, Wei W (2016) Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery. J Membr Sci 509:138–148. https://doi.org/10.1016/j.memsci.2016.02.049

    Article  CAS  Google Scholar 

  52. Choudhary S, Sengwa RJ (2017) Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim Acta 247:924–941. https://doi.org/10.1016/j.electacta.2017.07.051

    Article  CAS  Google Scholar 

  53. Korley LTJ, Pate BD, Thomas EL, Hammond PT (2006) Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes. Polymer 47(9):3073–3082. https://doi.org/10.1016/j.polymer.2006.02.093

    Article  CAS  Google Scholar 

  54. Hossieny N, Shaayegan V, Ameli A, Saniei M, Park CB (2017) Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology. Polymer 112:208–218. https://doi.org/10.1016/j.polymer.2017.02.015

    Article  CAS  Google Scholar 

  55. Hu P, Duan Y, Hu D, Qin B, Zhang J, Wang Q, Liu Z, Cui G, Chen L (2015) Rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature. ACS Appl Mater Interfaces 7(8):4720–4727. https://doi.org/10.1021/am5083683

    Article  CAS  Google Scholar 

  56. Wetjen M, Kim GT, Joost M, Appetecchi GB, Winter M, Passerini S (2014) Thermal and electrochemical properties of PEO-LiTFSI-Pyr14TFSI-based composite cathodes, incorporating 4 V-class cathode active materials. J Power Sources 246:846–857. https://doi.org/10.1016/j.jpowsour.2013.08.037

    Article  CAS  Google Scholar 

  57. Xu C, Sun B, Gustafsson T, Edstrom K, Brandell D, Hahlin M (2014) Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. J Mater Chem A 2(20):7256–7264. https://doi.org/10.1039/C4TA00214H

    Article  CAS  Google Scholar 

  58. Chen B, Xu Q, Huang Z, Zhao Y, Chen S, Xu X (2016) One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery. J Power Sources 331:322–331. https://doi.org/10.1016/j.jpowsour.2016.09.063

    Article  CAS  Google Scholar 

  59. Yang C, Fu K, Zhang Y, Hitz E, Hu L (2017) Adv Mater 29:36. https://doi.org/10.1002/adma.201701169

    Google Scholar 

  60. Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117(15):10403–10473. https://doi.org/10.1021/acs.chemrev.7b00115

    Article  CAS  Google Scholar 

  61. Guo Y, Li H, Zhai T (2017) Reviving lithium-metal anodes for next-generation high-energy batteries. Adv Mater 29:1700007. https://doi.org/10.1002/adma.201700007

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Education Ministry of Anhui Province (KJ2017A031), and we gratefully acknowledge the Engineering Technology Research Center of Waterborne Polymer Materials of Anhui Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Bao.

Electronic supplementary material

ESM 1

(DOCX 242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, N., Song, Y., Tao, C. et al. Effect of the soft and hard segment composition on the properties of waterborne polyurethane-based solid polymer electrolyte for lithium ion batteries. J Solid State Electrochem 22, 1109–1121 (2018). https://doi.org/10.1007/s10008-017-3855-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3855-1

Keywords

Navigation