Skip to main content
Log in

Solid polymer electrolytes based on poly(ionic liquid-co-ethylene oxide) for room-temperature solid-state lithium batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Solid polymer electrolytes (SPEs) possessing attractive electrochemical performance are essentially required for lithium-ion batteries (LIBs). Herein, a poly(imidazolium ionic liquid-co-ethylene oxide) (PILEO) is synthesized via a facile one-pot poly-Radziszewski reaction. The incorporated PILEO can reduce the crystallinity of the obtained SPEs, and hence facilitates lithium ion migration. It is demonstrated that the developed PILEO-60 SPE, without adding any plasticizers or inorganic fillers, exhibits a high ionic conductivity of 1.78 × 10−4 S cm−1 at 25 ℃ and a wide electrochemical stability window of 4.9 V (vs. Li/Li+). The assembled LFP/PILEO-60/Li cell possesses a high discharge capacity (140 mAh g−1 at 25 ℃), good cycling performance (90.3% of capacity retention after 100 cycles), and stable coulombic efficiency (99.7%). In combination with the industrially feasible synthetic procedure of PILEO, this work provides a facile and effective strategy for the fabrication of high-performance LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li M, Wang C, Chen Z, Xu K, Lu J (2020) New concepts in electrolytes. Chem Rev 120:6783–6819. https://doi.org/10.1021/acs.chemrev.9b00531

    Article  CAS  PubMed  Google Scholar 

  2. Liu Y, Zhang R, Wang J, Wang Y (2021) Current and future lithium-ion battery manufacturing. iScience 24:102332. https://doi.org/10.1016/j.isci.2021.102332

  3. Diouf B, Pode R (2015) Potential of lithium-ion batteries in renewable energy. Renewable Energy 76:375–380. https://doi.org/10.1016/j.renene.2014.11.058

    Article  Google Scholar 

  4. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224. https://doi.org/10.1016/j.jpowsour.2012.02.038

    Article  CAS  Google Scholar 

  5. Chen R, Li Q, Yu X, Chen L, Li H (2020) Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem Rev 120:6820–6877. https://doi.org/10.1021/acs.chemrev.9b00268

    Article  CAS  PubMed  Google Scholar 

  6. Baskoro F, Wong HQ, Yen H-J (2019) Strategic structural design of a gel polymer electrolyte toward a high efficiency lithium-ion battery. ACS Appl Energy Mater 2:3937–3971. https://doi.org/10.1021/acsaem.9b00295

    Article  CAS  Google Scholar 

  7. Meyer WH (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10:439–448. https://doi.org/10.1002/(sici)1521-4095(199804)10:6%3c439::aid-adma439%3e3.0.co;2-i

    Article  CAS  PubMed  Google Scholar 

  8. Li C, Huang Y, Chen C, Feng X, Zhang Z, Liu P (2022) A high-performance solid electrolyte assisted with hybrid biomaterials for lithium metal batteries. J Colloid Interface Sci 608:313–321. https://doi.org/10.1016/j.jcis.2021.09.113

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Yang J, Shen L, Guo Q, He H, Yao X (2021) Synergistic effects of plasticizer and 3D framework toward high-performance solid polymer electrolyte for room-temperature solid-state lithium batteries. ACS Appl Energy Mater 4:4129–4137. https://doi.org/10.1021/acsaem.1c00468

    Article  CAS  Google Scholar 

  10. Sun Y, Zhang X, Ma C, Guo N, Liu Y, Liu J, Xie H (2021) Fluorine-containing triblock copolymers as solid-state polymer electrolytes for lithium metal batteries. J Power Sources 516:230686. https://doi.org/10.1016/j.jpowsour.2021.230686

    Article  CAS  Google Scholar 

  11. Imholt L, Dörr TS, Zhang P, Ibing L, Cekic-Laskovic I, Winter M, Brunklaus G (2019) Grafted polyrotaxanes as highly conductive electrolytes for lithium metal batteries. J Power Sources 409:148–158. https://doi.org/10.1016/j.jpowsour.2018.08.077

    Article  CAS  Google Scholar 

  12. Li S, Jiang K, Wang J, Zuo C, Jo YH, He D, Xie X, Xue Z (2019) Molecular brush with dense PEG side chains: design of a well-defined polymer electrolyte for lithium-ion batteries. Macromolecules 52:7234–7243. https://doi.org/10.1021/acs.macromol.9b01641

    Article  CAS  Google Scholar 

  13. Cao XH, Li JH, Yang MJ, Yang JL, Wang RY, Zhang XH, Xu JT (2020) Simultaneous improvement of ionic conductivity and mechanical strength in block copolymer electrolytes with double conductive nanophases. Macromol Rapid Commun 41:1900622. https://doi.org/10.1002/marc.201900622

    Article  CAS  Google Scholar 

  14. Marsh KN, Boxall JA, Lichtenthaler R (2004) Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib 219:93–98. https://doi.org/10.1016/j.fluid.2004.02.003

    Article  CAS  Google Scholar 

  15. Wang L, Zhu H-J, Zhai W, Cai F, Liu X-M, Yang H (2014) Study of a novel gel electrolyte based on poly-(methoxy/hexadecyl-poly(ethylene glycol) methacrylate) co-polymer plasticized with 1-butyl-3-methylimidazolium tetrafluoroborate. RSC Adv 4:36357–36365. https://doi.org/10.1039/c4ra03661a

    Article  CAS  Google Scholar 

  16. Huo H, Zhao N, Sun J, Du F, Li Y, Guo X (2017) Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery. J Power Sources 372:1–7. https://doi.org/10.1016/j.jpowsour.2017.10.059

    Article  CAS  Google Scholar 

  17. Zhang Z, Zhang Q, Shi J, Chu YS, Yu X, Xu K, Ge M, Yan H, Li W, Gu L, Hu Y-S, Li H, Yang X-Q, Chen L, Huang X (2017) A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life. Adv Energy Mater 7:1601196. https://doi.org/10.1002/aenm.201601196

    Article  CAS  Google Scholar 

  18. Yan L, Rank C, Mecking S, Winey KI (2020) Gyroid and other ordered morphologies in single-ion conducting polymers and their impact on ion conductivity. J Am Chem Soc 142:857–866. https://doi.org/10.1021/jacs.9b09701

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Zanelotti CJ, Wang X, Kerr R, Jin L, Kan WH, Dingemans TJ, Forsyth M, Madsen LA (2021) Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat Mater 20:1255–1263. https://doi.org/10.1038/s41563-021-00995-4

    Article  CAS  PubMed  Google Scholar 

  20. Wang RY, Jeong S, Ham H, Kim J, Lee H, Son CY, Park MJ (2023) Superionic bifunctional polymer electrolytes for solid-state energy storage and conversion. Adv Mater 35:2203413. https://doi.org/10.1002/adma.202203413

    Article  CAS  Google Scholar 

  21. Zhang S-Y, Zhuang Q, Zhang M, Wang H, Gao Z, Sun J-K, Yuan J (2020) Poly(ionic liquid) composites. Chem Soc Rev 49:1726–1755. https://doi.org/10.1039/c8cs00938d

    Article  CAS  PubMed  Google Scholar 

  22. Guo J, Sun Z, Zhou Y, Yan F (2022) Poly(ionic liquid)-based energy and electronic devices. Chin J Chem 40:1099–1108. https://doi.org/10.1002/cjoc.202100820

    Article  CAS  Google Scholar 

  23. Zhou Y, Wang B, Yang Y, Li R, Wang Y, Zhou N, Shen J, Zhou Y (2019) Dicationic tetraalkylammonium-based polymeric ionic liquid with star and four-arm topologies as advanced solid-state electrolyte for lithium metal battery. React Funct Polym 145:104375. https://doi.org/10.1016/j.reactfunctpolym.2019.104375

    Article  CAS  Google Scholar 

  24. Zhang M, Zuo Q, Wang L, Yu S, Mai Y, Zhou Y (2020) Poly(ionic liquid)-based polymer composites as high-performance solid-state electrolytes: benefiting from nanophase separation and alternating polymer architecture. Chem Commun 56:7929–7932. https://doi.org/10.1039/d0cc03281f

    Article  CAS  Google Scholar 

  25. Ruan Z, Du Y, Pan H, Zhang R, Zhang F, Tang H, Zhang H (2022) Incorporation of poly(ionic liquid) with PVDF-HFP-based polymer electrolyte for all-solid-state lithium-ion batteries. Polymers 14:1950. https://doi.org/10.3390/polym14101950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thankamony RL, Chu H, Lim S, Yim T, Kim Y-J, Kim T-H (2015) Preparation and characterization of imidazolium-PEO-based ionene/PVDF(HFP)/LiTFSI as a novel gel polymer electrolyte. Macromol Res 23:38–44. https://doi.org/10.1007/s13233-015-3001-9

    Article  CAS  Google Scholar 

  27. Zhu X, Fang Z, Deng Q, Zhou Y, Fu X, Wu L, Yan W, Yang Y (2022) Poly(ionic liquid)@PEGMA block polymer initiated microphase separation architecture in poly(ethylene oxide)-based solid-state polymer electrolyte for flexible and self-healing lithium batteries. ACS Sustainable Chem Eng 10:4173–4185. https://doi.org/10.1021/acssuschemeng.1c08306

    Article  CAS  Google Scholar 

  28. Bao W, Hu Z, Wang Y, Jiang J, Huo S, Fan W, Chen W, Jing X, Long X, Zhang Y (2022) Poly(ionic liquid)-functionalized graphene oxide towards ambient temperature operation of all-solid-state PEO-based polymer electrolyte lithium metal batteries. Chem Eng J 437:135420. https://doi.org/10.1016/j.cej.2022.135420

    Article  CAS  Google Scholar 

  29. Bao W, Fan W, Luo J, Huo S, Hu Z, Jing X, Chen W, Long X, Zhang Y (2022) Imidazolium-type poly(ionic liquid) endows the composite polymer electrolyte membrane with excellent interface compatibility for all-solid-state lithium metal batteries. ACS Appl Mater Interfaces 14:55664–55673. https://doi.org/10.1021/acsami.2c17842

    Article  CAS  PubMed  Google Scholar 

  30. Boton LB, More PP, Puguan JMC, Kim H (2022) Tailoring the PEO-based ion conductive ionene as potential quasi-solid electrolyte for electrochemical devices. J Mol Liq 358:119187. https://doi.org/10.1016/j.molliq.2022.119187

    Article  CAS  Google Scholar 

  31. Sood R, Zhang B, Serghei A, Bernard J, Drockenmuller E (2015) Triethylene glycol-based poly(1,2,3-triazolium acrylate)s with enhanced ionic conductivity. Polym Chem 6:3521–3528. https://doi.org/10.1039/c5py00273g

    Article  CAS  Google Scholar 

  32. Li Y, Sun Z, Shi L, Lu S, Sun Z, Shi Y, Wu H, Zhang Y, Ding S (2019) Poly(ionic liquid)-polyethylene oxide semi-interpenetrating polymer network solid electrolyte for safe lithium metal batteries. Chem Eng J 375:121925. https://doi.org/10.1016/j.cej.2019.121925

    Article  CAS  Google Scholar 

  33. Zhou D, Liu R, Zhang J, Qi X, He Y-B, Li B, Yang Q-H, Hu Y-S, Kang F (2017) In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy 33:45–54. https://doi.org/10.1016/j.nanoen.2017.01.027

    Article  CAS  Google Scholar 

  34. Lindner J-P (2016) Imidazolium-based polymers via the poly-Radziszewski reaction. Macromolecules 49:2046–2053. https://doi.org/10.1021/acs.macromol.5b02417

    Article  CAS  Google Scholar 

  35. Xu W, Zhang M, Chen Y, Tian Q, Zhou X, Zhang L, Wang X, Zhang W (2023) Photoreversible control over ionic conductivity of coumarin-containing poly(ionic liquid)-based solid electrolyte. Express Polym Lett 17:406–416. https://doi.org/10.3144/expresspolymlett.2023.29

    Article  CAS  Google Scholar 

  36. Zhang L, Zhang P, Chang C, Guo W, Guo ZH, Pu X (2021) Self-healing solid polymer electrolyte for room-temperature solid-state lithium metal batteries. ACS Appl Mater Interfaces 13:46794–46802. https://doi.org/10.1021/acsami.1c14462

    Article  CAS  PubMed  Google Scholar 

  37. Liang L, Yuan W, Chen X-h, Liao H (2021) Flexible, nonflammable, highly conductive and high-safety double cross-linked poly(ionic liquid) as quasi-solid electrolyte for high performance lithium-ion batteries. Chem Eng J 421:130000. https://doi.org/10.1016/j.cej.2021.130000

    Article  CAS  Google Scholar 

  38. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525–2540. https://doi.org/10.1039/C0CS00081G

    Article  CAS  PubMed  Google Scholar 

  39. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28:2324–2328. https://doi.org/10.1016/0032-3861(87)90394-6

    Article  CAS  Google Scholar 

  40. Hu Z, Chen J, Guo Y, Zhu J, Qu X, Niu W, Liu X (2020) Fire-resistant, high-performance gel polymer electrolytes derived from poly(ionic liquid)/P(VDF-HFP) composite membranes for lithium ion batteries. J Membr Sci 599:117827. https://doi.org/10.1016/j.memsci.2020.117827

    Article  CAS  Google Scholar 

  41. Ezzat AO, Al-Lohedan HA (2021) Dehydration of heavy crude oil emulsions using novel imidazolium-based poly ionic liquids. J Mol Liq 326:115284. https://doi.org/10.1016/j.molliq.2021.115284

    Article  CAS  Google Scholar 

  42. Li M, Wang L, Yang B, Du T, Zhang Y (2014) Facile preparation of polymer electrolytes based on the polymerized ionic liquid poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) for lithium secondary batteries. Electrochim Acta 123:296–302. https://doi.org/10.1016/j.electacta.2013.12.179

    Article  CAS  Google Scholar 

  43. Sha Y, Dong T, Zhao Q, Zheng H, Wen X, Chen S, Zhang S (2020) A new strategy for enhancing the room temperature conductivity of solid-state electrolyte by using a polymeric ionic liquid. Ionics 26:4803–4812. https://doi.org/10.1007/s11581-020-03638-x

    Article  CAS  Google Scholar 

  44. Shalu CSK, Singh RK, Chandra S (2015) Electrical, mechanical, structural, and thermal behaviors of polymeric gel electrolyte membranes of poly(vinylidene fluoride-co-hexafluoropropylene) with the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate plus lithium tetrafluoroborate. J Appl Polym Sci 132:41456. https://doi.org/10.1002/app.41456

    Article  CAS  Google Scholar 

  45. Ramesh S, Lu S-C (2012) Enhancement of ionic conductivity and structural properties by 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid in poly(vinylidene fluoride-hexafluoropropylene)-based polymer electrolytes. J Appl Polym Sci 126:E484–E492. https://doi.org/10.1002/app.36790

    Article  CAS  Google Scholar 

  46. Sun J, Yao X, Li Y, Zhang Q, Hou C, Shi Q, Wang H (2020) Facilitating interfacial stability via bilayer heterostructure solid electrolyte toward high-energy, safe and adaptable lithium batteries. Adv Energy Mater 10:2000709. https://doi.org/10.1002/aenm.202000709

    Article  CAS  Google Scholar 

  47. Zhang W, Zhao X, Zhang Z, Xu Y, Wang X (2012) Preparation of poly(vinyl alcohol)-based membranes with controllable surface composition and bulk structures and their pervaporation performance. J Membr Sci 415–416:504–512. https://doi.org/10.1016/j.memsci.2012.05.037

    Article  CAS  Google Scholar 

  48. Fan L, Wei S, Li S, Li Q, Lu Y (2018) Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv Energy Mater 8:1702657. https://doi.org/10.1002/aenm.201702657

    Article  CAS  Google Scholar 

  49. Wang Y, Wu L, Lin Z, Tang M, Ding P, Guo X, Zhang Z, Liu S, Wang B, Yin X, Chen Z, Amine K, Yu H (2022) Hydrogen bonds enhanced composite polymer electrolyte for high-voltage cathode of solid-state lithium battery. Nano Energy 96:107105. https://doi.org/10.1016/j.nanoen.2022.107105

    Article  CAS  Google Scholar 

  50. Li X, Zheng Y, Pan Q, Li CY (2019) Polymerized ionic liquid-containing interpenetrating network solid polymer electrolytes for all-solid-state lithium metal batteries. ACS Appl Mater Interfaces 11:34904–34912. https://doi.org/10.1021/acsami.9b09985

    Article  CAS  PubMed  Google Scholar 

  51. Ma F, Zhang Z, Yan W, Ma X, Sun D, Jin Y, Chen X, He K (2019) Solid polymer electrolyte based on polymerized ionic liquid for high performance all-solid-state lithium-ion batteries. ACS Sustainable Chem Eng 7:4675–4683. https://doi.org/10.1021/acssuschemeng.8b04076

    Article  CAS  Google Scholar 

  52. Chen P, Liu X, Wang S, Zeng Q, Wang Z, Li Z, Zhang L (2019) Confining hyperbranched star poly(ethylene oxide)-based polymer into a 3D interpenetrating network for a high-performance all-solid-state polymer electrolyte. ACS Appl Mater Interfaces 11:43146–43155. https://doi.org/10.1021/acsami.9b14346

    Article  CAS  PubMed  Google Scholar 

  53. Huang B, Lai P, Hua H, Li R, Shen X, Yang X, Zhang P, Zhao J (2023) A copolyether with pendant cyclic carbonate segment for PEO-based solid polymer electrolyte. J Power Sources 570:233049. https://doi.org/10.1016/j.jpowsour.2023.233049

    Article  CAS  Google Scholar 

  54. Zhou B, Deng T, Yang C, Wang M, Yan H, Yang Z, Wang Z, Xue Z (2023) Self-healing and recyclable polymer electrolyte enabled with boronic ester transesterification for stabilizing ion deposition. Adv Funct Mater 33:2212005. https://doi.org/10.1002/adfm.202212005

    Article  CAS  Google Scholar 

  55. Zhang F, Sun Y, Wang Z, Fu D, Li J, Hu J, Xu J, Wu X (2020) Highly conductive polymeric ionic liquid electrolytes for ambient-temperature solid-state lithium batteries. ACS Appl Mater Interfaces 12:23774–23780. https://doi.org/10.1021/acsami.9b22945

    Article  CAS  PubMed  Google Scholar 

  56. Caradant L, Lepage D, Nicolle P, Prébé A, Aymé-Perrot D, Dollé M (2020) Effect of Li+ affinity on ionic conductivities in melt-blended nitrile rubber/polyether. ACS Appl Polym Mater 2:4943–4951. https://doi.org/10.1021/acsapm.0c00827

    Article  CAS  Google Scholar 

  57. Zhang X, Wang C, Zhao W, Han M, Sun J, Wang Q (2022) Passerini polymerization as a novel route for high ionic conductivity solid polymer electrolyte. Eur Polym J 176:111400. https://doi.org/10.1016/j.eurpolymj.2022.111400

    Article  CAS  Google Scholar 

  58. Li R, Fang Z, Wang C, Zhu X, Fu X, Fu J, Yan W, Yang Y (2022) Six-armed and dicationic polymeric ionic liquid for highly stretchable, nonflammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for flexible and safe lithium batteries. Chem Eng J 430:132706. https://doi.org/10.1016/j.cej.2021.132706

    Article  CAS  Google Scholar 

  59. Tian X, Yang P, Yi Y, Liu P, Wang T, Shu C, Qu L, Tang W, Zhang Y, Li M, Yang B (2020) Self-healing and high stretchable polymer electrolytes based on ionic bonds with high conductivity for lithium batteries. J Power Sources 450:227629. https://doi.org/10.1016/j.jpowsour.2019.227629

    Article  CAS  Google Scholar 

  60. Yin K, Zhang Z, Li X, Yang L, Tachibana K, Hirano S-i (2015) Polymer electrolytes based on dicationic polymeric ionic liquids: application in lithium metal batteries. J Mater Chem A 3:170–178. https://doi.org/10.1039/C4TA05106H

    Article  CAS  Google Scholar 

  61. Xu D, He YB, Chu X, Ding Z, Li B, He J, Du H, Qin X, Kang F (2015) Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate. Chemsuschem 8:1009–1016. https://doi.org/10.1002/cssc.201403060

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Y, Lu W, Cong L, Liu J, Sun L, Mauger A, Julien CM, Xie H, Liu J (2019) Cross-linking network based on poly(ethylene oxide): solid polymer electrolyte for room temperature lithium battery. J Power Sources 420:63–72. https://doi.org/10.1016/j.jpowsour.2019.02.090

    Article  CAS  Google Scholar 

  63. Peled E, Golodnitsky D, Ardel G, Eshkenazy V (1995) The sei model-application to lithium-polymer electrolyte batteries. Electrochim Acta 40:2197–2204. https://doi.org/10.1016/0013-4686(95)00163-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Natural Science Foundation of Zhejiang Province (LY13B040004).

Funding

Natural Science Foundation of Zhejiang Province, LY13B040004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 721 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, K., Chen, Y., Hao, C. et al. Solid polymer electrolytes based on poly(ionic liquid-co-ethylene oxide) for room-temperature solid-state lithium batteries. J Solid State Electrochem 28, 565–576 (2024). https://doi.org/10.1007/s10008-023-05707-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05707-3

Keywords

Navigation