Skip to main content

Advertisement

Log in

Influence of barium titanate nanofiller on PEO/PVdF-HFP blend-based polymer electrolyte membrane for Li-battery applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Organic-inorganic hybrid membranes based on poly(ethylene oxide) (PEO) 6.25 wt%/poly(vinylidene fluoride hexa fluoro propylene) [P(VdF-HFP)] 18.75 wt% were prepared by using various concentration of nanosized barium titanate (BaTiO3) filler. Structural characterizations were made by X-ray diffraction and Fourier transform infrared spectroscopy, which indicate the inclusion of BaTiO3 in to the polymer matrix. Addition of filler creates an effective route of polymer-filler interface and promotes the ionic conductivity of the membranes. From the ionic conductivity results, 6 wt% of BaTiO3-incorporated composite polymer electrolyte (CPE) showed the highest ionic conductivity (6 × 10−3 Scm−1 at room temperature). It is found that the filler content above 6 wt% rendered the membranes less conducting. Morphological images reveal that the ceramic filler was embedded over the membrane. Thermogravimetric and differential thermal analysis (TG-DTA) of the CPE sample with 6 wt% of the BaTiO3 shows high thermal stability. Electrochemical performance of the composite polymer electrolyte was studied in LiFePO4/CPE/Li coin cell. Charge-discharge cycle has been performed for the film exhibiting higher conductivity. These properties of the nanocomposite electrolyte are suitable for Li-batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kalyana Sundaram NT, Muhammed Musthafa OT, Lokesh KS, Subramania A (2008) Mater Chem Phys 110:11–16

    Article  Google Scholar 

  2. Hwang YJ, Nahma KS, Prem Kumar T, Manuel Stephan A (2008) J Membrane Sci 310:349–355

    Article  CAS  Google Scholar 

  3. Wang FM, Wu HC, Cheng CS, Huang CL, Yang CR (2009) Electrochim Acta 54:3788–3793

    Article  CAS  Google Scholar 

  4. Yao WH, Zhang ZR, Gao J, Li J, Xu J, Wang ZC, Yang Y (2009) Energy Environ Sci 2:1102–1108

    Article  CAS  Google Scholar 

  5. Knauth P (2009) Solid State Ionics 180:911–916

    Article  CAS  Google Scholar 

  6. Voigt N, Van Wullen L (2014) Solid State Ionics 260:65–75

    Article  CAS  Google Scholar 

  7. Moskwiak M, Giska I, Borkowska R, Zalewska A, Marczewski M, Marczewska H, Wieczorek W (2006) J Power Sources 159:443–448

    Article  CAS  Google Scholar 

  8. Ahmad A, Rahman MYA, Low SP, Hamzah H (2011) ISRN Mater Sci 2011:1–7

    Article  Google Scholar 

  9. Chatterjee B, Kulshrestha N, Gupta PN (2016) Measurement 82:490–499

    Article  Google Scholar 

  10. Raghavan P, Zhao X, Kim JK, Manuel J, Chauhan GS, Ahn JH, Nah C (2008) Electrochim Acta 54:228–234

    Article  CAS  Google Scholar 

  11. Costa CM, Silva MM, Lanceros-Méndez S (2013) RSC Adv 3:11404–11417

    Article  CAS  Google Scholar 

  12. Ulaganathan M, Mathew CM, Rajendran S (2013) Electrochim Acta 93:230–235

    Article  CAS  Google Scholar 

  13. Prabakaran K, Mohanty S, Nayak SK (2015) New J Chem 39:8602–8613

    Article  CAS  Google Scholar 

  14. Joykumar Singh T, Bhat SV (2004) J Power Sources 129:280–287

    Article  Google Scholar 

  15. Prosini PP, Passerini S (2002) Solid State Ionics 146:65–72

    Article  CAS  Google Scholar 

  16. Chi W, Zhou D, Xia Y, Zhou J, Sun S (2015) Int J Electrochem Sci 10:5327–5337

    CAS  Google Scholar 

  17. Masoud EM, El-Bellihi AA, Bayoumy WA, Mousa MA (2013) Mater Res Bull 48:1148–1154

    Article  CAS  Google Scholar 

  18. Loo YL, Register RA, Ryan AJ (2000) Phys Rev Lett 84:4120–4123

    Article  CAS  Google Scholar 

  19. Wilson J, Ravi G, Anbu Kulandainathan M (2006) Polimeros 16:1–11

    Google Scholar 

  20. Li ZH, Zhang HP, Zhang P, Li GC, Wu YP, Zhou XD (2008) J Membrane Sci 322:416–422

    Article  CAS  Google Scholar 

  21. Noor SAM, Ahmad A, Talib IA, Rahman MYA (2010) Ionics 16:161–170

    Article  CAS  Google Scholar 

  22. Kiran Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2011) Physica B 406:1706–1712

    Article  CAS  Google Scholar 

  23. Papke BL, Ratner MA, Shriver DF (1982) J Electrochem Soc 129:1434–1438

    Article  CAS  Google Scholar 

  24. Intarakamhang S (2005) ISBN 974–533–520-7:54–175

  25. Ulaganathan M, Rajendran S (2010) Ionics 16:515–521

    Article  CAS  Google Scholar 

  26. Manuel Stephan A, Thirunakaran R, Renganathan NG, Sundaram V, Pitchumani S, Muniyandi N, Gangadharan R, Ramamoorthy P (1999) J Power Sources 81:752–758

    Article  Google Scholar 

  27. Nadimicherla R, Kalla R, Muchakayala R, Guo X (2015) Solid State Ionics 278:260–267

    Article  CAS  Google Scholar 

  28. Kesavan K, Chithra Mathew M, Rajendran S, Ulaganathan M (2014) Mat Sci Eng B 184:26–33

    Article  CAS  Google Scholar 

  29. Sun HY, Sohn HJ, Yamamoto O, Takeda Y, Imanishi N (1999) J Electrochem Soc 146:1672–1676

    Article  CAS  Google Scholar 

  30. Pradeepa P, Edwinraj S, Ramesh Prabhu M (2015) CCL 26:1191–1196

    CAS  Google Scholar 

  31. Itoh T, Ichikawa Y, Uno T, Kubo M, Yamamoto O (2003) Solid State Ionics 156:393–399

    Article  CAS  Google Scholar 

  32. Rajendran S, Kesavan K, Nithya R, Ulaganathan M (2012) Curr Appl Phys 12:789–793

    Article  Google Scholar 

  33. Kumar B, Nellutla S, Thokchom JS, Chem C (2006) J Power Sources 160:1329–1335

    Article  CAS  Google Scholar 

  34. Cowie JMG, Spence GH (1998) Solid State Ionics 109:139–144

    Article  CAS  Google Scholar 

  35. ElBellihi AA, Bayoumy WA, Masoud EM, Mousa MA (2012) Bull Kor Chem Soc 33:2949–2954

    Article  CAS  Google Scholar 

  36. Rajendran S, Babu RS, Sivakumar P (2008) J Membrane Sci 315:67–73

    Article  CAS  Google Scholar 

  37. MacCallum JR, Vincent CA, (1987 and 1989) Polymer Electrolyte Reviews - 1 and 2, Elsevier Applied Science

  38. Hirankumar G, Baskaran R, Selvasekarapandian S, Bhuvaneswari MS (2004) Ionics 10:129–134

    Article  Google Scholar 

  39. Rusu DI, Rusu GG, Luca D (2011) Acta Phys Pol 119:850–856

    Article  CAS  Google Scholar 

  40. Isa KBM, Osman Z, Arof AK, Othman L, Zainol NH, Samin SM, Chong WG, Kamarulzaman N (2014) Solid State Ionics 26:8288–8293

    Google Scholar 

  41. Hu L, Tang Z, Zhang Z (2007) J Power Sources 166:226–232

    Article  CAS  Google Scholar 

  42. Nunes-Pereira J, Costa CM, Sousa RE, Machado AV, Silva MM, Lanceros-Méndez S (2014) Electrochim Acta 20:276–284

    Article  Google Scholar 

Download references

Acknowledgement

The author P. Pradeepa gratefully acknowledges the UGC-BSR, New Delhi, India, toward the financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Prabhu Manimuthu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabakaran, P., Manimuthu, R.P. & Gurusamy, S. Influence of barium titanate nanofiller on PEO/PVdF-HFP blend-based polymer electrolyte membrane for Li-battery applications. J Solid State Electrochem 21, 1273–1285 (2017). https://doi.org/10.1007/s10008-016-3477-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3477-z

Keywords

Navigation