Skip to main content

Advertisement

Log in

Tin chloride perovskite-sensitized core/shell photoanode solar cell with spiro-MeOTAD hole transport material for enhanced solar light harvesting

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An attempt has been made to fabricate methyl ammonium tin chloride (CH3NH3SnCl3) perovskite-sensitized TiO2 nanostructure photoanode solar cell with hole transport material (HTM) spiro-MeOTAD and graphite-coated counter electrode (CE). The TiO2 nanoparticles (TNPs), TiO2 nanoleaves (TNLs), and TNLs with MgO core/shell photoanodes were prepared to fabricate perovskite-sensitized solar cells (PSSCs). The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The photovoltaic characteristics of the PSSCs, photocurrent density (J sc), open-circuit voltage (V oc), fill factor (FF), and power conversion efficiency (PCE) were determined under illumination of AM 1.5 G. Electrochemical impedance spectroscopy (EIS) analysis was carried out to study the charge transport and lifetime of charge carriers at the photoanode–sensitizer–electrolyte interface of the PSSCs. The PSSC made with CH3NH3SnCl3 perovskite-sensitized TNL–MgO core/shell photoanode and spiro-MeOTAD HTM shows an impressive photovoltaic performance, with J sc = 17.24 mA/cm2, V oc = 800 mV, FF = 73 %, and PCE = 9.98 % under 100 mW/cm2 light intensity. The advent of such simple solution-processed mesoscopic heterojunction solar cells paves the way to realize low-cost and high-efficiency solar cells. By the aid of electrochemical impedance spectroscopy, it is revealed that the core/shell structure can increase an interfacial resistance of the photoanode–CH3NH3SnCl3 interface and retard an electron recombination process in the photoanode–sensitizer–HTM interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Science 338:643–647

    Article  CAS  Google Scholar 

  2. Heo JH, Im SH, Noh JH, Mandal TN, Lim CS, Chang JA, Lee YH, Kim H (2013) Nat Photonics 7:486–491

    Article  CAS  Google Scholar 

  3. Burschka J, Pellet N, Moon SJ, Baker RH, Gao P, Nazeeruddin MK, Grätzel M (2013) Nature 499:316–319

    Article  CAS  Google Scholar 

  4. Xing G, Mathews N, Sun S, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC (2013) Science 342:344–347

    Article  CAS  Google Scholar 

  5. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Science 342:341–344

    Article  CAS  Google Scholar 

  6. Edri E, Kirmayer S, Cahen D, Hodes G (2013) J Phys Chem Lett 4:897–902

    Article  CAS  Google Scholar 

  7. Snaith HJ (2013) J Phys Chem Lett 4:3623–3630

    Article  CAS  Google Scholar 

  8. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) J Am Chem Soc 131:6050–6051

    Article  CAS  Google Scholar 

  9. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Baker RH, Yum JH, Moser JE (2012) Sci Rep 2:591–597

    Google Scholar 

  10. Kim HS, Im SH, Park NG (2014) J Phys Chem C 118:5615–5625

    Article  CAS  Google Scholar 

  11. Bihui L, Gang L, Lijuan L, Yiwen T (2010) J Nat Sci 15:325–329

    Google Scholar 

  12. Angewadte BVL (2014) Chem Int Ed 53:635–637

    Article  Google Scholar 

  13. Service R (2013) Science 342:794–797

    Article  Google Scholar 

  14. Gidlow DA (2004) Occup Med 54:76–81

    Article  CAS  Google Scholar 

  15. Mosconi E, Amat A, Nazeeruddin MK, Grätzel M, De Angelis F (2013) J Phys Chem C 117:13902–13913

    Article  CAS  Google Scholar 

  16. Bach U, Lupo D, Comte P, Moser JE, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M (1998) Nature 395:583–585

    Article  CAS  Google Scholar 

  17. Arend H, Huber W, Mischgofsky FH, Richtervan Leeuwen GK (1978) J Cryst Growth 43:213–223

    Article  CAS  Google Scholar 

  18. Umebayashi T, Asai K, Kondo T, Nakao A (2003) Phys Rev B 67:155405–115506

    Article  Google Scholar 

  19. Baikie T, Fang Y, Kadro JM, Schreyer M, Wei F, Mhaisalkar SG, Graetzel M, White TJ (2013) J Mater Chem A 1:5628–5641

    Article  CAS  Google Scholar 

  20. Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ (2014) Energy Environ Sci 7:982–988

    Article  CAS  Google Scholar 

  21. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C 1:1–21

    Article  CAS  Google Scholar 

  22. Pirkanniemi K, Sillanpää M (2002) Chemosphere 48:1047–1060

    Article  CAS  Google Scholar 

  23. Hu Y, Tsai HL, Huang CL (2003) J Eur Ceram Soc 23:691–696

    Article  CAS  Google Scholar 

  24. Li B, Lü G, Luo L, Tang Y (2010) Wuhan Univ J Nat Sci 15:325–329

    Article  CAS  Google Scholar 

  25. Ananthajothi P, Venkatachalam P (2015) Int Res J Eng Technol 2:785–791

    Google Scholar 

  26. Maheswari D, Venkatachalam P (2015) J Electron Mater 44:967–976

    Article  CAS  Google Scholar 

  27. Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Grätzel M (2012) J Am Chem Soc 134:17396–17399

    Article  CAS  Google Scholar 

  28. Shahbazi M, Wang H (2016) Sol Energy 123:74–87

    Article  CAS  Google Scholar 

  29. He XYJ, Peng JF, Chu W, Lia YZ, Tong DG (2014) J Mater Chem A 2:1721–1731

    Article  CAS  Google Scholar 

  30. Chen X, Mao SS (2007) Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  31. Zhang S, Yang X, Qin C, Numata Y, Han L (2014) J Mater Chem A 2:5167–5177

    Article  CAS  Google Scholar 

  32. Avellaneda CO, Gonçalves AD, Benedetti JE, Nogueira AF (2010) Electrochim Acta 55:1468–1474

    Article  CAS  Google Scholar 

  33. Snaith HJ (2010) Adv Funct Mater 20:13–19

    Article  CAS  Google Scholar 

  34. Dualeh A, Moehl T, Tétreault N, Teuscher J, Gao P, Nazeeruddin MK, Grätzel M (2014) ACS Nano 8:362–374

    Article  CAS  Google Scholar 

  35. Gonzalez-Pedro V, Juarez-Perez EJ, Arsyad WS, Barea EM, Fabregat-Santiago F, Mora-Sero I, Bisquert J (2014) Nano Lett 14:888–893

    Article  CAS  Google Scholar 

  36. Fujihara K, Kumar A, Jose R, Ramakrishna S, Uchida S (2007) Nanotechnology 18:365709–365713

    Article  Google Scholar 

  37. Baxter JB, Aydil JB (2006) Sol Energy Mater Sol Cells 90:607–622

    Article  CAS  Google Scholar 

  38. Kim HS, Lee JW, Yantara N, Boix PP, Kulkarni SA, Mhaisalkar S, Gratzel M, Park NG (2013) Nano Lett 13:2412–2417

    Article  CAS  Google Scholar 

  39. Qiu J, Qiu Y, Yan K, Zhong M, Mu C, Yan H, Yang S (2013) Nanoscale 5:3245–3248

    Article  CAS  Google Scholar 

  40. Hamadanian M, Jabbari V, Gravand A, Asad M (2012) Surf Coat Technol 206:4531–4538

    Article  CAS  Google Scholar 

  41. Yin WJ, Shi T, Yan Y (2014) Adv Mater 26:4653–4658

    Article  CAS  Google Scholar 

  42. Green MA, Ho-Baillie A, Snaith HJ (2014) Nat Photonics 8:506–514

    Article  CAS  Google Scholar 

  43. Xiao Z, Yuan Y, Wang Q, Shao Y, Yang B, Deng Y, Dong Q, Hu M, Cheng B, Huang J (2016) Mater Sci Eng R 101:1–38

    Article  Google Scholar 

  44. Imoto K, Takahashi K, Yamaguchi T, Komura T, Nakamura JI, Murata K (2003) Sol Energy Mater Sol Cells 79:459–469

    Article  CAS  Google Scholar 

  45. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Nano Lett 13:1764–1769

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the authorities of Annamalai University for providing all necessary facilities to carry out the present work successfully. We also thank the anonymous referees who significantly contributed to improving the contents of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Venkatachalam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ananthajothi, P., Venkatachalam, P. Tin chloride perovskite-sensitized core/shell photoanode solar cell with spiro-MeOTAD hole transport material for enhanced solar light harvesting. J Solid State Electrochem 20, 2633–2642 (2016). https://doi.org/10.1007/s10008-016-3262-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3262-z

Keywords

Navigation