Skip to main content
Log in

Innocuous hybrid-halide perovskite solar cells based on titania nanowires towards eco-friendly solar energy conversion

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Emerging Perovskite Solar Cell (PSC) technology and well-established nanotechnology have unlocked the gateway for developing low-cost solar cells and compete equally with Silicon-based commercial solar cells. However, the presence of toxic lead and poor stability of perovskites used in these cells limit their wider application and commercialization. In this regard, the present research work has been formulated with several objectives aiming at the fabrication of low-cost and enviro-friendly PSCs using facile methods and featured nanomaterials. Lead-free and hole transporter-free methylammonium tin hybrid-halide perovskites (CH3NH3SnInBr3−n, where 0 ≤ n ≤ 3)-based PSCs have been fabricated employing one-dimensional titania nanowires (1D TNWs) electron transporter. The research work centres around the influence of various parameters such as nature of precursor and halide content on the morphology, optical properties, and bandgap of the component materials. The effect of band-gap engineering of perovskites through varying halide ions on the power conversion efficiency (PCE) of the PSCs has been extensively investigated. Among the as-fabricated PSCs, the device with CH3NH3SnI3 has delivered the highest PCE of 1.02%, with Jsc of 8.4 mA cm−2, Voc of 0.231 V and FF of 0.44. The obtained PCE is significantly lower than the current highly efficient PSCs. Yet the as-fabricated PSCs perform better among its specific category with lead-free components and without hole transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets analysed are not publicly available as the current study is under support of the national agency.

References

  1. P.C. Jain, Renew. Energy 3, 403 (1993)

    Article  CAS  Google Scholar 

  2. J.P. Christodouleas, R.D. Forrest, C.G. Ainsley, Z. Tochner, S.M. Hahn, E. Glatstein, N. Engl, J. Med. 364, 2334 (2011)

    CAS  Google Scholar 

  3. R. Lewis, Int. Aff. 65, 163 (1988)

    Article  Google Scholar 

  4. A. Labib, Learning from failures: decision analysis of major disasters (CR Press, 2014)

    Google Scholar 

  5. C. Richter, D. Lincot, C.A. Gueymard (eds.), Solar energy (Springer, 2013)

  6. J.J. Shea, I.E.E.E. Electr, Insul. Mag. 18, 46 (2002)

    Google Scholar 

  7. S. Sharma, K.K. Jain, A. Sharma, Mater. Sci. Appl. 06, 1145 (2015)

    CAS  Google Scholar 

  8. T.M. Letcher, V.M. Fthenakis (eds.), A comprehensive guide to solar energy systems (Elsevier, 2018)

    Google Scholar 

  9. S. P. Sukhatme, Solar energy: principle of thermal collection and storage (2008)

  10. M.D. Archer, M.A. Green, Clean electricity from photovoltaics (Imperial College Press, 2014)

    Book  Google Scholar 

  11. H.S. Jung, N.G. Park, Small 11, 10 (2015)

    Article  CAS  Google Scholar 

  12. K.P. Bhandari, R.J. Ellingson, A comprehensive guide to solar energy systems (Elsevier, 2018), pp.233–254

    Book  Google Scholar 

  13. J. Gong, M. Flatken, A. Abate, J.-P. Correa-Baena, I. Mora-Seró, M. Saliba, Y. Zhou, ACS Energy Lett. 4, 861 (2019)

    Article  CAS  Google Scholar 

  14. M. Grätzel, Acc. Chem. Res. 50, 487 (2017)

    Article  Google Scholar 

  15. S.Y. Kim, H.C. Lee, Y. Nam, Y. Yun, S.H. Lee, D.H. Kim, J.H. Noh, J.H. Lee, D.H. Kim, S. Lee, Y.W. Heo, Acta Mater. 181, 460 (2019)

    Article  CAS  Google Scholar 

  16. S.K. Yadavalli, Z. Dai, M. Hu, Q. Dong, W. Li, Y. Zhou, R. Zia, N.P. Padture, Acta Mater. 193, 10 (2020)

    Article  CAS  Google Scholar 

  17. S.P. Singh, P. Nagarjuna, Dalt. Trans. 43, 5247 (2014)

    Article  CAS  Google Scholar 

  18. N.G. Park, J. Phys. Chem. Lett. 4, 2423 (2013)

    Article  CAS  Google Scholar 

  19. F. Chiarella, P. Ferro, F. Licci, M. Barra, M. Biasiucci, A. Cassinese, R. Vaglio, Appl. Phys. A Mater. Sci. Process. 86, 89 (2007)

    Article  CAS  Google Scholar 

  20. N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, N.G. Park, J. Am. Chem. Soc. 137, 8696 (2015)

    Article  CAS  Google Scholar 

  21. J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, S. Yang, Nanoscale 5, 3245 (2013)

    Article  CAS  Google Scholar 

  22. H. Li, L. Tao, F. Huang, Q. Sun, X. Zhao, J. Han, Y. Shen, M. Wang, A.C.S. Appl, Mater. Interfaces 9, 38967 (2017)

    Article  CAS  Google Scholar 

  23. F. Chen, C. Xu, Q. Xu, Y. Zhu, F. Qin, W. Zhang, Z. Zhu, W. Liu, Z. Shi, A.C.S. Appl, Mater. Interfaces 10, 25763 (2018)

    Article  CAS  Google Scholar 

  24. Z. Wang, Q. Ou, Y. Zhang, Q. Zhang, H.Y. Hoh, Q. Bao, A.C.S. Appl, Mater. Interfaces 10, 24258 (2018)

    Article  CAS  Google Scholar 

  25. M. Jahandar, N. Khan, H.K. Lee, S.K. Lee, W.S. Shin, J.C. Lee, C.E. Song, S.J. Moon, A.C.S. Appl, Mater. Interfaces 9, 35871 (2017)

    Article  CAS  Google Scholar 

  26. Z. Yao, T.W. Jones, M. Grigore, N.W. Duffy, K.F. Anderson, R.B. Dunbar, K. Feron, F. Hao, H. Lin, G.J. Wilson, A.C.S. Appl, Mater. Interfaces 10, 14673 (2018)

    Article  CAS  Google Scholar 

  27. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  CAS  Google Scholar 

  28. D. Weber, Zeitschrift Für Naturforsch. B 33B, 1443 (1978)

    Article  CAS  Google Scholar 

  29. P. Lopez-Varo, J.A. Jiménez-Tejada, M. García-Rosell, S. Ravishankar, G. Garcia-Belmonte, J. Bisquert, O. Almora, Adv. Energy Mater. 8, 1702772 (2018)

    Article  Google Scholar 

  30. R. Sharma, A. Sharma, S. Agarwal, M.S. Dhaka, Sol. Energy 244, 516 (2022)

    Article  CAS  Google Scholar 

  31. W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I.I. Seok, Science (–80) 356, 1376 (2017)

    Article  CAS  Google Scholar 

  32. H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim, M.G. Kim, Nature 598, 444 (2021)

    Article  CAS  Google Scholar 

  33. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Mater. Today 18, 155 (2015)

    Article  CAS  Google Scholar 

  34. S. Suhaimi, M.M. Shahimin, Z.A. Alahmed, J. Chyský, A.H. Reshak, Int. J. Electrochem. Sci. 10, 2859 (2015)

    CAS  Google Scholar 

  35. M. Grätzel, Nature 414, 338 (2001)

    Article  Google Scholar 

  36. T. Tenkyong, J. Sahaya Selva Mary, B. Praveen, K. Pugazhendhi, D.J. Sharmila, J.M. Shyla, Mater. Sci. Semicond. Process. 83, 150 (2018)

    Article  CAS  Google Scholar 

  37. T. Tenkyong, B. Praveen, K. Pugazhendhi, D.J. Sharmila, J.M. Shyla, CrystEngComm 21, 4798 (2019)

    Article  CAS  Google Scholar 

  38. K. Pugazhendhi, B. Praveen, D.J. Sharmila, J. Sahaya Selva Mary, P. Naveen Kumar, V. Bharathilenin, J. Merline Shyla, Sol. Energy 215, 443 (2021)

    Article  CAS  Google Scholar 

  39. J. Annai Joseph Steffy, P. Naveen Kumar, J. Sahaya Selva Mary, W. Jothi Jeyarani, T. Tenkyong, K. Pugazhendhi, V. Chandrakala, J. Merline Shyla, Surf. Coatings Technol. 310, 113 (2017)

    Article  CAS  Google Scholar 

  40. P. Zhang, J. Wu, T. Zhang, Y. Wang, D. Liu, H. Chen, L. Ji, C. Liu, W. Ahmad, Z.D. Chen, S. Li, Adv. Mater. 30, 1703737 (2018)

    Article  Google Scholar 

  41. F. Shao, J. Sun, L. Gao, S. Yang, J. Luo, J. Phys. Chem. C 115, 1819 (2011)

    Article  CAS  Google Scholar 

  42. R. Agarwal, Himanshu, S.L. Patel, M. Verma, S. Chander, C. Ameta, M.S. Dhaka, Opt. Mater. (Amst). 116, 111033 (2021)

    Article  CAS  Google Scholar 

  43. X. Wang, Z. Li, J. Shi, Y. Yu, Chem. Rev. 114, 9346 (2014)

    Article  CAS  Google Scholar 

  44. J.-H. Yun, L. Wang, R. Amal, Y. Ng, Energies 9, 1030 (2016)

    Article  Google Scholar 

  45. X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Nano Lett. 8, 3781 (2008)

    Article  CAS  Google Scholar 

  46. W.-Q. Wu, Y.-F. Xu, C.-Y. Su, D.-B. Kuang, Energy Environ. Sci. 7, 644 (2014)

    Article  CAS  Google Scholar 

  47. B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)

    Article  CAS  Google Scholar 

  48. J. Su, L. Guo, RSC Adv. 5, 53012 (2015)

    Article  CAS  Google Scholar 

  49. W.Q. Wu, B.X. Lei, H.S. Rao, Y.F. Xu, Y.F. Wang, C.Y. Su, D. Bin Kuang, Sci. Rep. 3, 1352 (2013)

    Article  Google Scholar 

  50. D. Ponniah, F. Xavier, Phys. B Condens. Matter 392, 20 (2007)

    Article  CAS  Google Scholar 

  51. H. Li, Q. Yu, Y. Huang, C. Yu, R. Li, J. Wang, F. Guo, S. Jiao, S. Gao, Y. Zhang, X. Zhang, P. Wang, L. Zhao, A.C.S. Appl, Mater. Interfaces 8, 13384 (2016)

    Article  CAS  Google Scholar 

  52. V. Chandrakala, J. Annai Joseph Steffy, N. Bachan, W. Jothi Jeyarani, T. Tenkyong, J. Merline Shyla, Acta Metall. Sin. (English Lett.) 29, 457 (2016)

    Article  CAS  Google Scholar 

  53. K. Thamaphat, P. Limsuwan, B. Ngotawornchai, Kasetsart J. Nat. Sci. 42, 357 (2008)

    Google Scholar 

  54. L. Yang, Y. Lin, J. Jia, X. Xiao, X. Li, X. Zhou, J. Power Sources 182, 370 (2008)

    Article  CAS  Google Scholar 

  55. L.E. Mo, Z.Q. Li, Y.C. Ding, C. Gao, L.H. Hu, Y. Huang, T. Hayat, A. Alsaedi, S.Y. Dai, Sol. Energy 177, 448 (2019)

    Article  CAS  Google Scholar 

  56. J. Ma, S. Yao, P. Cheng, S. Du, Y. Sun, F. Liu, G. Lu, Chem. Res. Chinese Univ. 31, 841 (2015)

    Article  CAS  Google Scholar 

  57. H.G. Hecht, J. Res. t He Natl. Bur. Stand. Phys. Chem. 80, 567 (1976)

    Article  Google Scholar 

  58. K. Pugazhendhi, W.J. Jeyarani, T. Tenkyong, P.N. Kumar, B. Praveen, Mech. Mater. Sci. Eng. 9, 402 (2017)

    Google Scholar 

  59. M. Weiss, J. Horn, C. Richter, D. Schlettwein, Phys. Status Solidi Appl. Mater. Sci. 213, 975 (2016)

    Article  CAS  Google Scholar 

  60. M.L. Lai, T.Y.S. Tay, A. Sadhanala, S.E. Dutton, G. Li, R.H. Friend, Z.K. Tan, J. Phys. Chem. Lett. 7, 2653 (2016)

    Article  CAS  Google Scholar 

  61. A. Iefanova, N. Adhikari, A. Dubey, D. Khatiwada, Q. Qiao, AIP Adv. 6, 1 (2016)

    Article  Google Scholar 

  62. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013)

    Article  CAS  Google Scholar 

  63. F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Nat. Photonics 8, 489 (2014)

    Article  CAS  Google Scholar 

  64. N.G. Park, M. Grätzel, T. Miyasaka, Organic-inorganic halide perovskite photovoltaics (Springer International Publishing, 2016)

    Book  Google Scholar 

  65. H. Xu, H. Yuan, J. Duan, Y. Zhao, Z. Jiao, Q. Tang, Electrochim. Acta 282, 807 (2018)

    Article  CAS  Google Scholar 

  66. C. Bernal, K. Yang, J. Phys. Chem. C 118, 24383 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Department of Science and Technology – Science and Engineering Research Board (DST-SERB) Extra Mural Research (EMR) Project – India (EMR/2016/006996).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the preparation of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Merline Shyla J..

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

K., P., B., P., D.J., S. et al. Innocuous hybrid-halide perovskite solar cells based on titania nanowires towards eco-friendly solar energy conversion. J Mater Sci: Mater Electron 34, 605 (2023). https://doi.org/10.1007/s10854-023-09941-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09941-3

Navigation