Skip to main content
Log in

Stable Tin Chloride Perovskite Sensitized Silver Doped Titania Nanosticks Photoanode Solar Cells with Different Hole Transport Materials

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Perovskite sensitized solar cells (PSSCs) have recently been catapulted to the cutting edge of thin-film photovoltaic research and development because of their promise for higher power conversion efficiencies and ease of fabrication. In this work, an attempt has been made to fabricate CH3NH3SnCl3 perovskite sensitized silver doped titania nanosticks photoanode solar cells with an efficient hole transport material (HTM), spiro-MeOTAD, poly(3-hexylthiophene-2,5-diyl) (PTTA) and CuI and attained light to electricity power conversion efficiency (PCE) of 10.46, 7.89 and 6.05 % respectively, under AM 1.5G illumination of 100 mW/cm2 intensity. As well, PSSCs made with redox couple electrolytes namely quasi-solid state electrolyte (QSSE) and ionic liquid (IL) electrolyte exhibited the PCE of 4.92 and 3.20 % respectively. A metal oxide (HfO2) layer is coated on the perovskite sensitized photoanode, which could increase the stability of PSSCs. The current density (Jsc)–open circuit voltage (Voc) study shows that PSSCs made with HTMs exhibited better fill factor and PCE. The electron impedance spectroscopy revealed that the electron lifetime (τn), electron mobility (µ) and charge collection efficiency (ηcc)in the PSSCs are in the order spiro-MeOTAD > PTTA > CuI > QSSE > IL. This work expresses that the nature of the HTM is essential for charge recombination and elucidates that finding an optimal HTM for the perovskite solar cell includes controlling the perovskite/HTM interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.V. Kamat, K. Tvrdy, D.R. Baker, J.G. Radich, Chem. Rev. 110, 6664 (2010)

    Article  CAS  Google Scholar 

  2. M. Graetzel, R.A.J. Janssen, D.B. Mitzi, E.H. Sargent, Nature 488, 304 (2012)

    Article  CAS  Google Scholar 

  3. M.T. Winkler, W. Wang, O. Gunawan, H.J. Hovel, T.K. Todorov, D.B. Mitzi, Energy Environ. Sci. 7, 1029 (2014)

    Article  Google Scholar 

  4. J.E. Coughlin, Z.B. Henson, G.C. Welch, G.C. Bazan, Acc. Chem. Res. 47, 257 (2014)

    Article  CAS  Google Scholar 

  5. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013)

    Article  CAS  Google Scholar 

  6. H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, N.G. Park, Nano Lett. 13, 2412 (2013)

    Article  CAS  Google Scholar 

  7. A. Kojima, K. Teshima, Y. Shirai, T.J. Miyasaka, Am. Chem. Soc. 131, 6050 (2009)

    Article  CAS  Google Scholar 

  8. H.J. Snaith, L. Schmidt-Mande, Adv. Mater. 19, 3187 (2007)

    Article  CAS  Google Scholar 

  9. W. Shockley, H.J.J. Queisser, Appl. Phys. 32, 510 (1961)

    Article  CAS  Google Scholar 

  10. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Nature 517, 476 (2015)

    Article  CAS  Google Scholar 

  11. A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Science 334, 629 (2011)

    Article  CAS  Google Scholar 

  12. M.I. Asghar, K. Miettunen, J. Halme, P. Vahermaa, M. Toivola, K. Aitola, P. Lund, Energy Environ. Sci. 3, 418 (2010)

    Article  CAS  Google Scholar 

  13. S. Mastroianni, A. Lanuti, S. Penna, A. Reale, T.M. Brown, A. Di Carlo, F. Decker, Chem. Phys. Chem. 13, 2925 (2012)

    CAS  Google Scholar 

  14. W. Zhang, R. Zhu, F. Li, Q. Wang, B. Liu, J. Phys. Chem. C 115, 7038 (2011)

    Article  CAS  Google Scholar 

  15. I.K. Ding, N. Tétreault, J. Brillet, B.E. Hardin, E.H. Smith, S.J. Rosenthal, F. Sauvage, M. Grätzel, M.D. McGehee, Adv. Funct. Mater. 19, 2431 (2009)

    Article  CAS  Google Scholar 

  16. F. Matteocci, S. Casaluci, S. Razza, A. Guidobaldi, T.M. Brown, A. Reale, A. Di Carlo, J. Power Sources 246, 361 (2014)

    Article  CAS  Google Scholar 

  17. V. Gonzalez-Pedro, E.J. Juarez-Perez, W.-S. Arsyad, E.M. Barea, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, Nano Lett. 14, 888 (2014)

    Article  CAS  Google Scholar 

  18. Q. Wang, T. Butburee, X. Wu, H. Chen, G. Liu, L. Wang, J. Mater. Chem. A 143, 13524 (2013)

    Article  Google Scholar 

  19. K. Manoharan, P. Venkatachalam, Mater. Sci. Semicond. Process. 30, 208 (2015)

    Article  CAS  Google Scholar 

  20. K.H. Ko, Y.C. Lee, Y.J. Jung, J. Colloid Interface Sci. 283, 482 (2005)

    Article  CAS  Google Scholar 

  21. C. Magnea, F. Dufour, F. Labat, G. Lancel, O. Durupthy, S. Cassaignon, T.H. Pauporte, J. Photochem. Photobiol. A 232, 22 (2012)

    Article  Google Scholar 

  22. M. Cui, S.H.A. Tian, H. Zhao, R. Jin, Y. Chen, B. Liu, H. Yang, Phys. E 44, 2110 (2012)

    Article  CAS  Google Scholar 

  23. Z. Zhu, C.-T. Kao, R.-J. Wu, Appl. Surf. Sci. 320, 348 (2014)

    Article  CAS  Google Scholar 

  24. F. Hao, C.C. Stoumpos, R.P.H. Chang, G. Mercouri, J. Kanatzidis, Am. Chem. Soc. 136, 8094 (2014)

    Article  CAS  Google Scholar 

  25. D. Bi, L. Yang, G. Boschloo, A. Hagfeldt, E.M.J. Johansson, J. Phys. Chem. Lett. 4, 1532 (2013)

    Article  CAS  Google Scholar 

  26. Y.F. Wang, J.H. Zeng, Y. Li, Electrochim. Acta 87, 256 (2013)

    Article  CAS  Google Scholar 

  27. D. Cahen, G. Hodes, M. Gratzel, J.F. Guilemoles, I. Riess, J. Phys. Chem. B 104, 2053 (2000)

    Article  CAS  Google Scholar 

  28. M. He, D. Zheng, M. Wang, C. Lin, Z. Lin, J. Mater. Chem. A 2, 5994 (2014)

    Article  CAS  Google Scholar 

  29. V.P.S. Perera, K. Tennakone, Sol. Energy Mater. Sol. Cells 79, 249 (2003)

    Article  CAS  Google Scholar 

  30. D. Maheswari, P. Venkatachalam, J. Electron. Mater. 44, 967 (2015)

    Article  CAS  Google Scholar 

  31. M.J. Ross, K.R. William, Impedance Spectroscopy, Emphasizing Solid Materials and Systems (Wiley, New York, 1987)

    Google Scholar 

  32. L. Que, Z. Lan, W. Wu, J. Wu, J. Lin, M. Huang, J. Power Sources 266, 440 (2014)

    Article  CAS  Google Scholar 

  33. T. Leijtens, B. Lauber, G.E. Eperon, S.D. Stranks, H.J. Snaith, J. Phys. Chem. Lett. 5, 1096 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Venkatachalam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramavenkateswari, K., Venkatachalam, P. Stable Tin Chloride Perovskite Sensitized Silver Doped Titania Nanosticks Photoanode Solar Cells with Different Hole Transport Materials. J Inorg Organomet Polym 26, 981–990 (2016). https://doi.org/10.1007/s10904-016-0410-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-016-0410-y

Keywords

Navigation