Skip to main content
Log in

Electropolymerization of carboxymethyl-β-cyclodextrin based on co-electrodeposition gold nanoparticles electrode: electrocatalysis and nonenzymatic glucose sensing

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A facile strategy is developed to fabricate an Au-CMCD/PCMCD electrode with high efficiency, universal, and selectivity electrocatalysis through electro-depositing carboxymethyl-β-cyclodextrins with gold nanoparticles (Au-CMCD) followed by employing electro-polymerization carboxymethyl-β-cyclodextrin (PCMCD). The chemical structure, microstructure, electrochemical activity, and electrocatalytic properties of Au-CMCD/PCMCD electrode are investigated. Due to the synergistic effect of the PCMCD and Au-CMCD layers, the as-prepared electrode exhibits an outstanding enhancement of universal electrocatalytic activity to eight kinds of crucial biomolecules and drugs, such as chloramphenicol, thymine, and glucose. Then, as a target analyte, glucose is used to investigate the sensing performances of Au-CMCD/PCMCD electrode. The amperometric detection of glucose shows a wide linear range expanding to 0.001∼110 mM with a low detection limit of 0.99 μM. More importantly, the absorption effect of PCMCD is stronger to glucose than other interfering species, which is favorable to avoid the influence of possible interfering substances. Furthermore, the glucose sensors reveal good stability and repeatability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Miao Y, Lei O, Zhou S, Xu L, Yang Z, Xiao M, Ouyang R (2014) Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosens Bioelectron 53:428–439

    Article  CAS  Google Scholar 

  2. Viswanathan V, Hansen HA, Rossmeisl J, Nørskov JK (2012) Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal 2(8):1654–1660

    Article  CAS  Google Scholar 

  3. Sitnikova NA, Komkova MA, Khomyakova IV, Karyakina EE, Karyakin AA (2014) Transition metal hexacyanoferrates in electrocatalysis of H2O2 reduction: an exclusive property of Prussian blue. Anal Chem 86(9):4131–4134

    Article  CAS  Google Scholar 

  4. Pandey PC, Pandey AK, Chauhan DS (2012) Nanocomposite of Prussian blue based sensor for l-cysteine: synergetic effect of nanostructured gold and palladium on electrocatalysis. Electrochim Acta 74:23–31

    Article  CAS  Google Scholar 

  5. Mei H, Wu W, Yu B, Wu H, Wang S, Xia Q (2016) Nonenzymatic electrochemical sensor based on Fe@Pt core–shell nanoparticles for hydrogen peroxide, glucose and formaldehyde. Sensors Actuators B 223:68–75

    Article  CAS  Google Scholar 

  6. Vilana J, Lorenzo M, Gómez E, Vallés E (2015) Electrochemical deposition of CoNi micro/nanostructures as new materials for electrochemical sensing of glucose. Mater Lett 159:154–158

    Article  CAS  Google Scholar 

  7. Hoa LT, Sun KG, Hur SH (2015) Highly sensitive non-enzymatic glucose sensor based on Pt nanoparticle decorated graphene oxide hydrogel. Sensors Actuators B 210:618–623

    Article  CAS  Google Scholar 

  8. Suneesh PV, Sara Vargis V, Ramachandran T, Nair BG, Satheesh Babu TG (2015) Co–Cu alloy nanoparticles decorated TiO2 nanotube arrays for highly sensitive and selective nonenzymatic sensing of glucose. Sensors Actuators B 215:337–344

    Article  CAS  Google Scholar 

  9. Yu JJ, Lu S, Li JW, Zhao FQ, Zeng BZ (2007) Characterization of gold nanoparticles electrochemically deposited on amine-functioned mesoporous silica films and electrocatalytic oxidation of glucose. J Solid State Electrochem 11:1211–1219

    Article  CAS  Google Scholar 

  10. Tian Y, Liu Y, Wang W-p, Zhang X, Peng W (2015) CuO nanoparticles on sulfur-doped graphene for nonenzymatic glucose sensing. Electrochim Acta 156:244–251

    Article  CAS  Google Scholar 

  11. Yang S, Liu L, Wang G, Li G, Deng D, Qu L (2015) One-pot synthesis of Mn3O4 nanoparticles decorated with nitrogen-doped reduced graphene oxide for sensitive nonenzymatic glucose sensing. J Electroanal Chem 755:15–21

    Article  CAS  Google Scholar 

  12. Lee SH, Yang J, Han YJ, Cho M, Lee Y (2015) Rapid and highly sensitive MnOx nanorods array platform for a glucose analysis. Sensors Actuators B 218:137–144

    Article  CAS  Google Scholar 

  13. Yang J, Cho M, Lee Y (2016) Synthesis of hierarchical Ni(OH)2 hollow nanorod via chemical bath deposition and its glucose sensing performance. Sensors Actuators B 222:674–681

    Article  CAS  Google Scholar 

  14. Wang X, Li X, Luo C, Sun M, Li L, Duan H (2014) Ultrasensitive molecularly imprinted electrochemical sensor based on magnetism graphene oxide/β-cyclodextrin/Au nanoparticles composites for chrysoidine analysis. Electrochim Acta 130:519–525

    Article  CAS  Google Scholar 

  15. Fu Y, Liang F, Tian H, Hu J (2014) Nonenzymatic glucose sensor based on ITO electrode modified with gold nanoparticles by ion implantation. Electrochim Acta 120:314–318

    Article  CAS  Google Scholar 

  16. Li C, Su Y, Lv X, Xia H, Shi H, Yang X, Zhang J, Wang Y (2012) Controllable anchoring of gold nanoparticles to polypyrrole nanofibers by hydrogen bonding and their application in nonenzymatic glucose sensors. Biosens Bioelectron 38(1):402–406

    Article  CAS  Google Scholar 

  17. Manthiram K, Surendranath Y, Alivisatos AP (2014) Dendritic assembly of gold nanoparticles during fuel-forming electrocatalysis. J Am Chem Soc 136(20):7237–7240

    Article  CAS  Google Scholar 

  18. Wang J, Xi J, Zhang L, Zhang J, Guo X, Zhao J, Song C, Wang L (2013) Synthesis of highly active SnO2-CNTs supported Pt-on-Au composite catalysts through site-selective electrodeposition for HCOOH electrooxidation. Electrochim Acta 112:480–485

    Article  CAS  Google Scholar 

  19. Feng JJ, Lv ZY, Qin SF, Li AQ, Fei Y, Wang AJ (2013) N-methylimidazole-assisted electrodeposition of Au porous textile-like sheet arrays and its application to electrocatalysis. Electrochim Acta 102:312–318

    Article  CAS  Google Scholar 

  20. Kozlov VM, Bicelli LP (2000) Infuence of noncoherent nucleation on the formation of the polycrystalline structure of metals electrodeposited in the presence of surface-active agents. Mater Chem Phys 62:158–163

    Article  CAS  Google Scholar 

  21. Feng D, Wang F, Chen Z (2009) Electrochemical glucose sensor based on one-step construction of gold nanoparticle–chitosan composite film. Sensors Actuators B 138(2):539–544

    Article  CAS  Google Scholar 

  22. Lv M, Wang X, Li J, Yang X, Zhang C, Yang J, Hu H (2013) Cyclodextrin-reduced graphene oxide hybrid nanosheets for the simultaneous determination of lead(II) and cadmium(II) using square wave anodic stripping voltammetry. Electrochim Acta 108:412–420

    Article  CAS  Google Scholar 

  23. Liu Z, Zhang A, Guo Y, Dong C (2014) Electrochemical sensor for ultrasensitive determination of isoquercitrin and baicalin based on DM-beta-cyclodextrin functionalized graphene nanosheets. Biosens Bioelectron 58:242–248

    Article  CAS  Google Scholar 

  24. Madrakian T, Haghshenas E, Afkhami A (2014) Simultaneous determination of tyrosine, acetaminophen and ascorbic acid using gold nanoparticles/multiwalled carbon nanotube/glassy carbon electrode by differential pulse voltammetric method. Sensors Actuators B 193:451–460

    Article  CAS  Google Scholar 

  25. Babakhanian A, Kaki S, Ahmadi M, Ehzari H, Pashabadi A (2014) Development of alpha-polyoxometalate-polypyrrole-Au nanoparticles modified sensor applied for detection of folic acid. Biosens Bioelectron 60:185–190

    Article  CAS  Google Scholar 

  26. Wu JW, Wang CH, Wang YC, Chang JK (2013) Ionic-liquid-enhanced glucose sensing ability of non-enzymatic Au/graphene electrodes fabricated using supercritical CO2 fluid. Biosens Bioelectron 46:30–36

    Article  CAS  Google Scholar 

  27. Guo Y, Guo S, Ren J, Zhai Y, Dong S, Wang E (2010) Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host-guest inclusion for enhanced electrochemical performance. ACS Nano 4(7):4001–4010

    Article  CAS  Google Scholar 

  28. Zheng X, Liu S, Hua X, Xia F, Tian D, Zhou C (2015) Highly sensitive detection of 2,4,6-trichlorophenol based on HS-β-cyclodextrin/gold nanoparticles composites modified indium tin oxide electrode. Electrochim Acta 167:372–378

    Article  CAS  Google Scholar 

  29. Xiong S, Cheng J, He L, Cai D, Zhang X, Wu Z (2015) Fabrication of β-cyclodextrin/graphene/1,10-diaminodecane composite on glassy carbon electrode and impedimetric method for Di(2-ethyl-hexyl) phthalate determination. J Electroanal Chem 743:18–24

    Article  CAS  Google Scholar 

  30. Yu X, Chen Y, Chang L, Zhou L, Tang F, Wu X (2013) β-cyclodextrin non-covalently modified ionic liquid-based carbon paste electrode as a novel voltammetric sensor for specific detection of bisphenol A. Sensors Actuators B 186:648–656

    Article  CAS  Google Scholar 

  31. Zhang F, Gu S, Ding Y, Zhang Z, Li L (2013) A novel sensor based on electropolymerization of beta-cyclodextrin and L-arginine on carbon paste electrode for determination of fluoroquinolones. Anal Chim Acta 770:53–61

    Article  CAS  Google Scholar 

  32. Zhao Y, Li SH, Chu J, Chen YP, Li WW, Yu HQ, Liu G, Tian YC, Xiong Y (2012) A nano-sized Au electrode fabricated using lithographic technology for electrochemical detection of dopamine. Biosens Bioelectron 35(1):115–122

    Article  CAS  Google Scholar 

  33. Liu X, Luo L, Ding Y, Kang Z, Ye D (2012) Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode. Bioelectrochemistry 86:38–45

    Article  CAS  Google Scholar 

  34. Borowiec J, Wang R, Zhu L, Zhang J (2013) Synthesis of nitrogen-doped graphene nanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol. Electrochim Acta 99:138–144

    Article  CAS  Google Scholar 

  35. Huang KJ, Wang L, Wang HB, Gan T, Wu YY, Li J, Liu YM (2013) Electrochemical biosensor based on silver nanoparticles–polydopamine–graphene nanocomposite for sensitive determination of adenine and guanine. Talanta 114:43–48

    Article  CAS  Google Scholar 

  36. Arvand M, Motaghed Mazhabi R, Niazi A (2013) Simultaneous determination of guanine, adenine and thymine using a modified carbon paste electrode by TiO2 nanoparticles-magnesium(II) doped natrolite zeolite. Electrochim Acta 89:669–679

    Article  CAS  Google Scholar 

  37. Liu X, Xie L, Li H (2012) Electrochemical biosensor based on reduced graphene oxide and Au nanoparticles entrapped in chitosan/silica sol–gel hybrid membranes for determination of dopamine and uric acid. J Electroanal Chem 682:158–163

    Article  CAS  Google Scholar 

  38. Amatore C, Gareil M, Savéant JM (1983) Homogeneous vs. heterogeneous electron transfer in electrochemical reactions: application to the electrohydrogenation of anthracene and related reactions. J Electroanal Chem Interfac Electrochem 147(1–2):1–38

    Article  CAS  Google Scholar 

  39. Amatore C, Saveant JM (1978) Do ECE mechanisms occur in conditions where they could be characterized by electrochemical kinetic techniques? J Electroanal Chem Interfac Electrochem 86(1):227–232

    Article  CAS  Google Scholar 

  40. Ciolkowski EL, Maness KM, Cahill PS, Wightman RM, Evans DH, Fosset B, Amatore C (1994) Disproportionation during electrooxidation of catecholamines at carbon-fiber microelectrodes. Anal Chem 66(21):3611–3617

    Article  CAS  Google Scholar 

  41. Ciolkowski EL, Cooper BR, Jankowski JA, Jorgenson JW, Wightman RM (1992) Direct observation of epinephrine and norepinephrine cosecretion from individual adrenal medullary chromaffin cells. J Am Chem Soc 114(8):2815–2821

    Article  CAS  Google Scholar 

  42. Pasta M, La Mantia F, Cui Y (2010) Mechanism of glucose electrochemical oxidation on gold surface. Electrochim Acta 55(20):5561–5568

    Article  CAS  Google Scholar 

  43. Yi W, Yang D, Chen H, Liu P, Tan J, Li H (2014) A highly sensitive nonenzymatic glucose sensor based on nickel oxide–carbon nanotube hybrid nanobelts. J Solid State Electrochem 18:899–908

    Article  CAS  Google Scholar 

  44. Wang L, Tang Y, Wang L, Zhu H, Meng X, Chen Y, Sun Y, Yang XJ, Wan P (2015) Fast conversion of redox couple on Ni(OH)2/C nanocomposite electrode for high-performance nonenzymatic glucose sensor. J Solid State Electrochem 19:851–860

    Article  CAS  Google Scholar 

  45. Jafarian M, Forouzandeh F, Danaee I, Gobal F, Mahjani MG (2009) Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode. J Solid State Electrochem 13:1171–1179

    Article  CAS  Google Scholar 

  46. Mallesha M, Manjunatha R, Suresh GS, Melo JS, D’Souza SF, Venkatesha TV (2012) Direct electrochemical non-enzymatic assay of glucose using functionalized graphene. J Solid State Electrochem 16:2675–2681

    Article  CAS  Google Scholar 

  47. Priya S, Berchmans S (2012) Copper oxide-modified glassy carbon electrode prepared through copper hexacyanoferrate–G5-PAMAM dendrimer templates as electrocatalyst for carbohydrate and alcohol oxidation. J Solid State Electrochem 16:1527–1535

    Article  Google Scholar 

  48. Berkkan A, Seçkin Aİ, Pekmez K, Tamer U (2010) Amperometric enzyme electrode for glucose determination based on poly(pyrrole-2-aminobenzoic acid). J Solid State Electrochem 14:975–980

    Article  CAS  Google Scholar 

  49. Narayanan JS, Anjalidevi C, Dharuman V (2013) Nonenzymatic glucose sensing at ruthenium dioxide–poly(vinyl chloride)–Nafion composite electrode. J Solid State Electrochem 17:937–947

    Article  CAS  Google Scholar 

  50. Wolfart F, Maciel A, Nagata N, Vidotti M (2013) Electrocatalytical properties presented by Cu/Ni alloy modified electrodes toward the oxidation of glucose. J Solid State Electrochem 17:1333–1338

    Article  CAS  Google Scholar 

  51. El-Refaei SM, Saleh MM, Awad MI (2014) Tolerance of glucose electrocatalytic oxidation on NiO x /MnO x /GC electrode to poisoning by halides. J Solid State Electrochem 18:5–12

    Article  CAS  Google Scholar 

  52. Yousef Elahi M, Heli H, Bathaie SZ, Mousavi MF (2007) Electrocatalytic oxidation of glucose at a Ni-curcumin modified glassy carbon electrode. J Solid State Electrochem 11:273–282

    Article  CAS  Google Scholar 

  53. Soomro RA, Ibupoto ZH, Sirajuddin, Abro MI, Willander M (2015) Controlled synthesis and electrochemical application of skein-shaped NiO nanostructures. J Solid State Electrochem 19:913–922

    Article  CAS  Google Scholar 

  54. Chen DJ, Lu YH, Wang AJ, Feng JJ, Huo TT, Dong WJ (2012) Facile synthesis of ultra-long Cu microdendrites for the electrochemical detection of glucose. J Solid State Electrochem 16:1313–1321

    Article  CAS  Google Scholar 

  55. Han X, Zhu Y, Yang X, Zhang J, Li C (2011) Dendrimer-encapsulated Pt nanoparticles on mesoporous silica for glucose detection. J Solid State Electrochem 15:511–517

    Article  CAS  Google Scholar 

  56. Hu LF, Gao W, He J, Liu H, Li B, Zhang XM (2013) NiTi-layered double hydroxide intercalated with β-CD and CM-β-CD: Interaction between the interlayer guests and the laminates. J Mol Struct 1041:151–155

    Article  CAS  Google Scholar 

  57. Herrero M, Labajos FM, Rives V (2009) Size control and optimisation of intercalated layered double hydroxides. Appl Clay Sci 42:510–518

    CAS  Google Scholar 

  58. Larew LA, Johnson DC (1989) Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media. J Electroanal Chem Interfac Electrochem 262(1–2):167–182

    Article  CAS  Google Scholar 

  59. Zhao Y, Chu J, Li SH, Li WW, Liu G, Tian YC, Yu HQ (2014) Non-Enzymatic electrochemical detection of glucose with a gold nanowire array electrode. Electroanalysis 26(3):656–663

    Article  CAS  Google Scholar 

  60. Gougis M, Tabet-Aoul A, Ma D, Mohamedi M (2014) Laser synthesis and tailor-design of nanosized gold onto carbon nanotubes for non-enzymatic electrochemical glucose sensor. Sensors Actuators B 193:363–369

    Article  CAS  Google Scholar 

  61. Kong FY, Li XR, Zhao WW, Xu JJ, Chen HY (2012) Graphene oxide-thionine-Au nanostructure composites: preparation and applications in non-enzymatic glucose sensing. Electrochem Commun 14(1):59–62

    Article  CAS  Google Scholar 

  62. Xie F, Huang Z, Chen C, Xie Q, Huang Y, Qin C, Liu Y, Su Z, Yao S (2012) Preparation of Au-film electrodes in glucose-containing Au-electroplating aqueous bath for high-performance nonenzymatic glucose sensor and glucose/O2 fuel cell. Electrochem Commun 18:108–111

    Article  CAS  Google Scholar 

  63. Li J, Wang Z, Li P, Zong N, Li F (2012) A sensitive non-enzyme sensing platform for glucose based on boronic acid–diol binding. Sensors Actuators B 161(1):832–837

    Article  CAS  Google Scholar 

  64. Liu Y, Ding Y, Zhang Y, Lei Y (2012) Pt–Au nanocorals, Pt nanofibers and Au microparticles prepared by electrospinning and calcination for nonenzymatic glucose sensing in neutral and alkaline environment. Sensors Actuators B 171–172:954–961

    Article  Google Scholar 

  65. Gholivand MB, Azadbakht A (2012) Fabrication of a highly sensitive glucose electrochemical sensor based on immobilization of Ni(II)–pyromellitic acid and bimetallic Au–Pt inorganic–organic hybrid nanocomposite onto carbon nanotube modified glassy carbon electrode. Electrochim Acta 76:300–311

    Article  CAS  Google Scholar 

  66. Xiao X, Wang M, Li H, Pan Y, Si P (2014) Non-enzymatic glucose sensors based on controllable nanoporous gold/copper oxide nanohybrids. Talanta 125:366–371

    Article  CAS  Google Scholar 

  67. Yi Q, Yu W, Niu F (2010) Novel nanoporous binary Au-Ru electrocatalysts for glucose oxidation. Electroanalysis 22(5):556–563

    Article  CAS  Google Scholar 

  68. Wu GH, Song XH, Wu YF, Chen XM, Luo F, Chen X (2013) Non-enzymatic electrochemical glucose sensor based on platinum nanoflowers supported on graphene oxide. Talanta 105:379–385

    Article  CAS  Google Scholar 

  69. Yuan B, Xu C, Liu L, Zhang Q, Ji S, Pi L, Zhang D, Huo Q (2013) Cu2O/NiOx/graphene oxide modified glassy carbon electrode for the enhanced electrochemical oxidation of reduced glutathione and nonenzyme glucose sensor. Electrochim Acta 104:78–83

    Article  CAS  Google Scholar 

  70. Fan Z, Liu B, Liu X, Li Z, Wang H, Yang S, Wang J (2013) A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor. Electrochim Acta 109:602–608

    Article  CAS  Google Scholar 

  71. Yuan B, Xu C, Deng D, Xing Y, Liu L, Pang H, Zhang D (2013) Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochim Acta 88:708–712

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (no.51372206) and the Graduate Starting Seed Fund of Northwestern Polytechnical University (no. Z2014022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Ma.

Ethics declarations

There is not any experiment involving human participants and/or animals. All the authors provided informed consent.

Funding

This study was funded by the National Natural Science Foundation of China (no.51372206) and the Graduate Starting Seed Fund of Northwestern Polytechnical University (no. Z2014022).

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, Y., Ma, X., Qu, F. et al. Electropolymerization of carboxymethyl-β-cyclodextrin based on co-electrodeposition gold nanoparticles electrode: electrocatalysis and nonenzymatic glucose sensing. J Solid State Electrochem 20, 1377–1389 (2016). https://doi.org/10.1007/s10008-016-3119-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3119-5

Keywords

Navigation