Skip to main content
Log in

A chiral sensor for recognition of DOPA enantiomers based on immobilization of β-cyclodextrin onto the carbon nanotube-ionic liquid nanocomposite

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A sensitive electrochemical method was explored for chiral recognition of 3,4-dihydroxyphenylalanine (DOPA) enantiomers based on immobilization of β-cyclodextrin (β-CD) onto the nanocomposite comprising multiwalled carbon nanotubes (MWCNTs) and ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate (BIMIMPF6) modified glassy carbon electrode (β-CD/MWCNTs-IL/GCE). The combination of ionic liquid and carbon nanotubes could create unique nanomaterials which facilitated the electron transfer. In addition, β-CD was brought in to act as the chiral selector for DOPA enantiomers recognition. The immobilization process of β-CD/MWCNTs-IL/GCE was monitored by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. The chiral interface (β-CD/MWCNTs-IL/GCE) was employed to discriminate DOPA enantiomers via differential pulse voltammetry. The results indicated that the proposed sensor exhibited a stronger electrochemical response toward D-DOPA over the linear range from 4.0 × 10−3 to 4.0 × 10−9 mol L−1 and the detection limit was 1.2 × 10−9 mol L−1 (S/N = 3). This work provided an available platform for enantioselective recognition of DOPA enantiomers based on the nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Misu Y, Goshima Y, Miyamae T (2002) Trends Pharmacol Sci 23:262–268

    Article  CAS  Google Scholar 

  2. Galvan A, Wichmann T (2008) Clin Neurophysiol 119:1459–1474

    Article  CAS  Google Scholar 

  3. Shen JS, Zhao SL (2004) J Chromatogr A 1059:209–214

    Article  CAS  Google Scholar 

  4. Nakanishi T, Matsunaga M, Nagasaka M, Asahi T, Osaka T (2006) J Am Chem Soc 128:13322–13323

    Article  CAS  Google Scholar 

  5. Han Q, Chen Q, Wang YH, Zhou J, Fu YZ (2012) Electroanalysis 24:332–337

    Article  CAS  Google Scholar 

  6. Fireman-Shoresh S, Turyan I, Mandler D, Avnir D, Marx S (2005) Langmuir 21:7842–7847

    Article  CAS  Google Scholar 

  7. Huang YH, Han Q, Zhang Q, Guo LJ, Guo DM, Fu YZ (2013) Electrochim Acta 113:564–569

    Article  CAS  Google Scholar 

  8. Chen LS, Chang FX, Meng LC, Li MX, Zhu ZW (2014) Analyst 139:2243–2248

    Article  CAS  Google Scholar 

  9. Kang YJ, Oh JW, Kim YR, Kim JS, Kim H (2010) Chem Commun 46:5665–5667

    Article  CAS  Google Scholar 

  10. Anderson L, Armstrong DW, Wei GT (2006) Anal Chem 78:2892–2902

    Article  Google Scholar 

  11. Wasserscheid P, Keim W (2000) Angew Chem Int Ed 39:3772–3789

    Article  CAS  Google Scholar 

  12. Buzzeo MC, Hardacre C, Compton RG (2004) Anal Chem 76:4583–4588

    Article  CAS  Google Scholar 

  13. Lu D, Shomali N, Shen A (2010) Electrochem Commun 12:1214–1217

    Article  CAS  Google Scholar 

  14. Huang JF, Lin BT (2009) Analyst 134:2306–2313

    Article  CAS  Google Scholar 

  15. Barrosse-Antle LE, Compton RG (2009) Chem Commun 3744–3746

  16. Huang XJ, Silvester DS, Streeter I, Aldous L, Hardacre C, Compton RG (2008) J Phys Chem C 112:19477–19483

    Article  CAS  Google Scholar 

  17. Zhu J, Qin Y, Zhang Y (2009) Electrochem Commun 11:1684–1687

    Article  CAS  Google Scholar 

  18. Chernyshov DV, Shvedene NV, Antipova ER, Pletnev IV (2008) Anal Chim Acta 621:178–184

    Article  CAS  Google Scholar 

  19. Aguilar AD, Forzani ES, Leright MJ, Tsow F, Cagan A, Iglesias RA, Nagahara LA, Amlani I, Tsui R, Tao NJ (2010) Nano Lett 10:380–384

    Article  Google Scholar 

  20. Kim JY, Kim JT, Song EA, Min YK, Hamaguchi H (2008) Macromolecules 41:2886–2889

    Article  CAS  Google Scholar 

  21. Zhao F, Wu XE, Wang MK, Liu Y, Gao LX, Dong SJ (2004) Anal Chem 76:4960–4967

    Article  CAS  Google Scholar 

  22. Safavia A, Farjamia F (2011) Biosens Bioelectron 26:2547–2552

    Article  Google Scholar 

  23. Turner MB, Spear SK, Holbrey JD, Rogers RD (2004) Biomacromolecules 5:1379–1384

    Article  CAS  Google Scholar 

  24. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  25. Katz E, Willner I (2004) Chem Phys Chem 5:1084–1104

    CAS  Google Scholar 

  26. Salimi A, MamKhezri H, Hallaj R, Zandi S (2007) Electrochim Acta 52:6097–6105

    Article  CAS  Google Scholar 

  27. Li YX, Wang P, Wang L, Lin XQ (2007) Biosens Bioelectron 22:3120–3125

    Article  CAS  Google Scholar 

  28. Borges RS, Ribeiro H, Lavall RL, Silva GG (2012) J Solid State Electrochem 16:3573–3580

    Article  CAS  Google Scholar 

  29. Pauliukaite R, Murnaghan KD, Doherty AP, Brett CMA (2009) J Electroanal Chem 633:106–112

    Article  CAS  Google Scholar 

  30. Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Science 300:2072–2074

    Article  CAS  Google Scholar 

  31. Khezrian S, Salimi A, Teymourian H, Hallaj R (2013) Biosens Bioelectron 43:218–225

    Article  CAS  Google Scholar 

  32. Wang XL, Cheng CC, Dong RR, Hao JC (2012) J Solid State Electrochem 16:2815–2821

    Article  CAS  Google Scholar 

  33. Zhang J, Zou HL, Qing Q, Yang YL, Li QW, Liu ZF, Guo XY, Du ZL (2003) J Phys Chem B 107:3712–3718

    Article  CAS  Google Scholar 

  34. Lu XC, Dong X, Zhang KY, Zhang YZ (2012) Anal Methods 4:3326–3331

    Article  CAS  Google Scholar 

  35. Majidi MR, Baj RFB, Naseri A (2013) Cent Eur J Chem 11:1172–1186

    Article  CAS  Google Scholar 

  36. Liu XH, Li L, Zhao XP, Lu XQ (2010) Colloid Surface B 81:344–349

    Article  CAS  Google Scholar 

  37. Salam MA, Makki MSI, Abdelaal MYA (2011) J Alloy Compd 509:2582–2587

    Article  CAS  Google Scholar 

  38. Yan J, Song H, Yang S, Yan J, Chen X (2008) Electrochim Acta 53:6351–6355

    Article  CAS  Google Scholar 

  39. Yu XW, Chen YK, Chang LP, Zhou L, Tang FX, Wu XP (2013) Sens Actuators B-Chem 186:648–656

    Article  CAS  Google Scholar 

  40. Matsunaga M, Nagasaka M, Nakanishi T, Sawaguchi T, Osaka T (2008) Electroanalysis 20:95–962

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support for this study by the National Natural Science Foundation of China (no. 21272188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingzi Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Huang, Y., Guo, D. et al. A chiral sensor for recognition of DOPA enantiomers based on immobilization of β-cyclodextrin onto the carbon nanotube-ionic liquid nanocomposite. J Solid State Electrochem 18, 3463–3469 (2014). https://doi.org/10.1007/s10008-014-2575-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2575-z

Keywords

Navigation