Skip to main content
Log in

Temperature stable supercapacitors based on ionic liquid and mixed functionalized carbon nanomaterials

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The ionic liquid 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide (BDMIM-TFSI) showed a conductivity of 1.65 mS cm−1 and an electrochemical stability window of 4.4 V at room temperature. Two types of electrodes based on carbon nanomaterials were prepared: (1) with alternating layers of two oppositely charged functionalized double-walled carbon nanotubes (DWCNTs) and (2) with the functionalized DWCNTs and graphene oxide nanoplatelets. The electrodes presented a porous morphology and a connected pathway between the carbon nanotubes and graphene oxide platelets. Electrochemical capacitors based on the carbon nanomaterials and BDMIM-TFSI were produced in a stacking configuration and were characterized at 25 °C, 60 °C, and 100 °C. The supercapacitors with electrodes based on the three alternating layers of two oppositely charged DWCNTs and graphene oxide presented higher values of capacitance, which were attributed to a morphology favorable to providing ionic access to the carbonaceous surface. Box-like voltammetric curves were used to calculate the capacitance in a 4-V potential window at 100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kotz R, Carlen M (2000) Electrochim Acta 45:2483–2498

    Article  CAS  Google Scholar 

  2. Miller JR, Simon P (2008) Science 321:651–652

    Article  CAS  Google Scholar 

  3. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stah EA, Ruoff RS (2011) Science 332:1537–1541

    Article  CAS  Google Scholar 

  4. Miller JR, Outlaw RA, Holloway BC (2010) Science 329:1637–1639

    Article  CAS  Google Scholar 

  5. Balducci A, Dugas R, Taberna PL, Simon P, Plée D, Mastragostino M, Passerini S (2007) J Power Sources 165:922–927

    Article  CAS  Google Scholar 

  6. Xu B, Wu F, Chen R, Cao G, Chen S, Wang G, Yang Y (2006) J Power Sources 158:773–778

    Article  CAS  Google Scholar 

  7. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Nature Mat 8:621–629

    Article  CAS  Google Scholar 

  8. Andriyko YO, Reischl W, Nauer GE (2009) J Chem Eng Data 54:855–860

    Article  CAS  Google Scholar 

  9. Matsumoto K, Hagiwara R (2009) Inorganic Chemistry 48:7350–7358

    Article  CAS  Google Scholar 

  10. Galinski M, Lewandowski A, Stepniak I (2006) Electrochim Acta 51:5567–5580

    Article  CAS  Google Scholar 

  11. Bazito FFC, Kawano Y, Torresi RM (2007) Electrochim Acta 52:6427–6437

    Article  CAS  Google Scholar 

  12. Lewandowski A, Swiderska-Mocek A (2009) J Power Sources 194:601–609

    Article  CAS  Google Scholar 

  13. Nadherna M, Dominko R, Hanzel D, Reiter J, Gaberscek M (2009) J Electrochem Soc 156:A619–A626

    Article  CAS  Google Scholar 

  14. Fletcher SI, Sillars FB, Carter RC, Cruden AJ, Mirzaeian M, Hudson NE, Parkinson JA, Hall PJ (2010) J Power Sources 195:7484–7488

    Article  CAS  Google Scholar 

  15. Borodin O, Gorecki W, Smith GD, Armand M (2010) J Phys Chem B 114:6786–6798

    Article  CAS  Google Scholar 

  16. O’Mahony AM, Silvester DS, Aldous L, Hardacre C, Compton RG (2008) J Chem Eng Data 53:2884–2891

    Article  Google Scholar 

  17. Noked M, Soffer A, Aurbach D (2011) J Sol St Electrochem 15:1563–1578

    Article  CAS  Google Scholar 

  18. Lavall RL, Borges RS, Calado HDR, Welter C, Trigueiro JPC, Rieumont J, Neves BRA, Silva GG (2008) J Power Sources 177:652–659

    Article  CAS  Google Scholar 

  19. Liu H, Zhu G (2007) J Power Sources 171:1054–1061

    Article  CAS  Google Scholar 

  20. Largeot C, Portet C, Chmiola J, Taberna P-L, Gogotsi Y, Simon P (2008) J Am Chem Soc 130:2730–2731

    Article  CAS  Google Scholar 

  21. Sun G, Li K, Liu Y, Wang J, He H, Wang J, Gu J, Li Y (2011) J Sol St Electrochem 15:607–613

    Article  CAS  Google Scholar 

  22. Emmenegger C, Mauron P, Sudan P, Wenger P, Hermann V, Gallay R, Zuettel A (2003) J Power Sources 124:321–329

    Article  CAS  Google Scholar 

  23. Pushparaj VL, Shaijimon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) PNAS 34:13574–13577

    Article  Google Scholar 

  24. Portet C, Taberna PL, Simon P, Flahaut E, Laberty-Robert C (2005) Electrochim Acta 50:4174–4181

    Article  CAS  Google Scholar 

  25. Frackowiak E, Beguin F (2001) Carbon 39:937–950

    Article  CAS  Google Scholar 

  26. Trigueiro JPC, Borges RS, Lavall RL, Calado HDR, Silva GG (2009) Nano Res 2:733–739

    Article  CAS  Google Scholar 

  27. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Polymer 52:5–25

    Article  CAS  Google Scholar 

  28. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Letters 8:3498–3502

    Article  CAS  Google Scholar 

  29. Wang D-W, Li F, Wu Z-S, Ren W, Cheng H-M (2009) Electrochemistry Communications 11:1729–1732

    Article  CAS  Google Scholar 

  30. Zhao X, Tian H, Zhu M, Tian K, Wang JJ, Kang F, Outlaw RA (2009) J Power Sources 194:1208–1212

    Article  CAS  Google Scholar 

  31. Fu C, Kuang Y, Huang Z, Wang X, Yin Y, Chen J, Zhou H (2011) J Sol St Electrochem 15:2581–2585

    Article  CAS  Google Scholar 

  32. Borges RS, Miquita DR, Silva GG (2011) Electrochmica Acta 56:4650–4656

    Article  CAS  Google Scholar 

  33. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  34. Guoxiu W, Xiaoping S, Bei W, Jane Y, Jinsoo P (2009) Carbon 47:1359–1364

    Article  Google Scholar 

  35. Lee SW, Kim B-S, Chen S, Shao-Horn Y, Hammond PT (2009) J Am Chem Soc 131:671–679

    Article  CAS  Google Scholar 

  36. Ngo HL, LeCompte K, Hargens L, McEwen AB (2000) Thermochimica Acta 357:97–102

    Article  Google Scholar 

  37. Lewandowski A, Galinski M (2004) J Phys Chem Solids 65:281–286

    Article  CAS  Google Scholar 

  38. Barisci JN, Wallace GG, MacFarlane DR, Baughman RH (2004) Electrochemistry Communications 6:22–27

    Article  CAS  Google Scholar 

  39. Hastak RS, Sivaraman P, Potphode DD, Shashidhara K, Samui AB (2012) Electrochim Acta 59:296–303

    Article  CAS  Google Scholar 

  40. Sato T, Masuda G, Takagi K (2004) Electrochim Acta 49:3603–3611

    Article  CAS  Google Scholar 

  41. Girija TC, Sangaranarayanan MV (2006) Synthetic Metals 156:244–250

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.S. Borges acknowledged scholarship from the Brazilian agency CNPq. The authors would like to thank Centro de Microscopia—UFMG for electronic microscopy images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borges, R.S., Ribeiro, H., Lavall, R.L. et al. Temperature stable supercapacitors based on ionic liquid and mixed functionalized carbon nanomaterials. J Solid State Electrochem 16, 3573–3580 (2012). https://doi.org/10.1007/s10008-012-1785-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1785-5

Keywords

Navigation