Skip to main content
Log in

Proton conductivity and structural properties of precursors mixed PVA/PWA-based hybrid composite membranes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new class of hybrid nanocomposite membranes containing poly(vinyl alcohol) (PVA), phosphotungstic acid (PWA), 3-glycidyloxypropyltrimethoxysilane (GPTMS), 3-mercaptopropyltrimethoxysilane (MPTMS) and glutaraldehyde (GA) were prepared by a sol–gel method. The aim of this research study was to investigate these novel and highly proton-conducting membranes including their properties, and performances for proton exchange membrane fuel cells (PEMFCs) operating at low temperature. 'Swelling' was observed at room temperature for all the composites. The manner in which the conductivity depended on temperature and humidity was determined and a maximum conductivity value of 2.5 × 10−2 S cm−1 was found at a 140°C and 30 % relative humidity (RH) for the PVA/PWA/GPTMS/MPTMS/P2O5/GA (50/5/15/10/10/10 wt.%) hybrid composite membrane. It was suggested that the conductivity depended strongly on the nature of the organic/inorganic components as well as on the acid concentration. X-ray diffraction (XRD) results demonstrated that this membrane had an amorphous phase, and Fourier transform infrared spectroscopy (FTIR) results confirmed the composite formation. Finally, membrane-electrode assemblies with a loading of 0.1 mg cm−2 of Pt/C on a prepared electrode gave rise to a current density of 309 mA cm−2 at 0.5 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Larminie J, Dicks A (2000) Fuel cell systems explained. Wiley, Great Britain

    Google Scholar 

  2. Costamagna P, Srinivasan S (2001) J Power Sources 102:242–252

    Article  CAS  Google Scholar 

  3. Lanniello R, Schmit VM, Stimming U, Stumper J, Wallau A (1994) Electrochim Acta 39:1863–1869

    Article  Google Scholar 

  4. Brinker CJ, Scherrer G (1989) Sol–gel science—the physics and chemistry of sol–gel processing. Academic Press, San Diego

    Google Scholar 

  5. Kreuer KD (1996) Chem Mater 8:610–641

    Article  CAS  Google Scholar 

  6. Wen J, Wilkes GL (1995) The polymeric materials encyclopedia: synthesis, properties and applications. CRC Press, Boca Raton

    Google Scholar 

  7. Chiola V, Ritsko J, Vanderpool CD (1971) US Patent 3:556–725

    Google Scholar 

  8. Chiang WY, Hu CM (1991) J Appl Polym Sci 43:2005–2012

    Article  CAS  Google Scholar 

  9. Rhim JW, Yeom CK, Kim SW (1998) J Appl Polym Sci 68:1717–1723

    Article  CAS  Google Scholar 

  10. Kim DS, Park HB, Rhim JW, Lee YM (2004) J Membr Sci 240:37–48

    Article  CAS  Google Scholar 

  11. Qiao J, Hamaya T, Okada T (2005) J Mater Chem 15:4414–4423

    Article  CAS  Google Scholar 

  12. Hamaya T, Inoue S, Qiao J, Okada T (2006) J Power Sources 156:311–324

    Article  CAS  Google Scholar 

  13. DeLuca NW, Elabd YA (2006) J Membr Sci 282:217–224

    Article  CAS  Google Scholar 

  14. Sairam M, Naidu BVK, Nataraj SK, Sreedhar B, Aminabhavi TM (2006) J Membr Sci 283:65–73

    Article  CAS  Google Scholar 

  15. Jia X, Li Y, Cheng Q, Zhang S, Zhang B (2007) Eur Polym J 43:1123–1131

    Article  CAS  Google Scholar 

  16. Rhee CH, Kim HK, Chang H, Lee JS (2005) Chem Mater 17:1691–1697

    Article  CAS  Google Scholar 

  17. Thomassin JM, Pagnoulle C, Caldarella G, Germain A, Jerome R (2005) Polymer 46:11389–11395

    Article  CAS  Google Scholar 

  18. Chen ZW, Holmberg B, Li YZ, Wang X, Deng WQ, Munoz R, Yan YS (2006) Chem Mater 18:5669–5675

    Article  CAS  Google Scholar 

  19. Thomassin JM, Pagnoulle C, Bizzari D, Caldarella G, Germain A, Jerome R (2006) Polymer 177:1137–1144

    CAS  Google Scholar 

  20. Lin YF, Yen CY, Ma CCM, Liao SH, Hung CH, Hsiao YH (2007) J Power Sources 165:692–700

    Article  CAS  Google Scholar 

  21. Heinzel A, Barragan VM (1999) J Power Sources 84:70–74

    Article  CAS  Google Scholar 

  22. Arico AS, Srinivasan S, Antonucci V (2001) Fuel Cells 1:133–161

    Article  CAS  Google Scholar 

  23. Grodzinski J (2007) J Polym Adv Technol 18:785–799

    Article  Google Scholar 

  24. Steck A, Stone C (1997) In: Savadogo O, Roberge PR (eds), Development of BAM membranes for fuel cell applications by the Canadian company Ballard. Montreal, Canada, 6–10 July, p. 792

  25. Noshay A, Robeson LM (1976) J Appl Polym Sci 20:1885–1903

    Article  CAS  Google Scholar 

  26. Kim YS, Wang F, Hickner M, Zawodzinski TA, McGrath JE (2003) J Membr Sci 212:263–282

    Article  CAS  Google Scholar 

  27. Li L, Wang Y, Chin Y (2002) J Chem Eng 10:614–623

    CAS  Google Scholar 

  28. Li L, Wang Y (2003) Mater Lett 57:1406–1410

    Article  CAS  Google Scholar 

  29. Xu W, Liu C, Xie X, Su Y, Lv Y, Xing W, Lu T (2004) Solid State Ionics 171:121–127

    Article  CAS  Google Scholar 

  30. Lin CW, Thangamuthu R, Yang CJ (2005) J Membr Sci 253:23–31

    Article  CAS  Google Scholar 

  31. Ramani V, Kunz HR, Fenton JM (2005) Electrochim Acta 50:1181–1187

    Article  CAS  Google Scholar 

  32. Hickner MA, Ghassem H, Kim YS, Einsla BR, McGrath JE (2004) Chem Rev 104:4587–4612

    Article  CAS  Google Scholar 

  33. Kim H, Prakash S, Mustain WE, Kohl PA (2009) J Power Sources 193:562–569

    Article  CAS  Google Scholar 

  34. Kim H, Kohl PA (2010) J Power Sources 195:2224–2229

    Article  CAS  Google Scholar 

  35. Sambandam S, Ramani V (2007) J Power Sources 170:259–267

    Article  CAS  Google Scholar 

  36. Savadogo O (1998) J New Mater Electrochem Syst 1:47–66

    CAS  Google Scholar 

  37. Lemons R (1990) J Power Sources 29:251–264

    Article  CAS  Google Scholar 

  38. Mansur HS, Oréfice RL, Mansur AA (2004) Polymer 45:7193–7202

    Article  CAS  Google Scholar 

  39. Okuhara T, Mizuno N, Misono M (1996) Adv Catal 41:113–252

    Article  CAS  Google Scholar 

  40. Matsuda A, Kansaki T, Kotani Y, Tatsumisago M, Minami T (2001) Solid State Ionics 139:113–119

    Article  CAS  Google Scholar 

  41. Staiti P, Freni S, Hocevar S (1999) J Power Sources 79:250–255

    Article  CAS  Google Scholar 

  42. Aparicio M, Castro Y, Duran A (2005) Solid State Ionics 176:333–340

    Article  CAS  Google Scholar 

  43. Honma I, Takeda Y, Bae JM (1999) Solid State Ionics 120:255–264

    Article  CAS  Google Scholar 

  44. Qiao JL, Hamaya T, Okada T (2005) Chem Mater 17:2413–2421

    Article  CAS  Google Scholar 

  45. Kumar B, Fellner JB (2003) J Power Sources 123:132–136

    Article  CAS  Google Scholar 

  46. Alberti G, Casciola M (2003) Ann Rev Mater Res 33:129–154

    Article  CAS  Google Scholar 

  47. Karthikeyan CS, Nunes SP, Prado LASA, Ponce ML, Silva H, Ruffmann B, Schulte K (2005) J Membr Sci 254:139–146

    Article  CAS  Google Scholar 

  48. Honma I, Nakajima H, Nomura S (2002) Solid State Ionics 154/155:707–712

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Education, Sport, Culture, Science and Technology (MEXT) and the Special Coordination Funds for Promoting Sciences and Technology of Japan. Special thanks go to Prof. Kishimoto, Graduate School of Natural Science of Technology and Prof. Kimura, Graduate School of Environmental Science, Okayama University, Japan; they permitted to use their lab equipments for my research work. Many thanks go to Mr. A. Suresh Kumar, RCIS, and Okayama University for his help with the XRD, FTIR and TG/DTA experiments. The author thanks Assist Prof. Y. Nishina, RCIS, Okayama University, for help with the Chemdraw software in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Thanganathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thanganathan, U., Nogami, M. Proton conductivity and structural properties of precursors mixed PVA/PWA-based hybrid composite membranes. J Solid State Electrochem 18, 97–104 (2014). https://doi.org/10.1007/s10008-013-2235-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2235-8

Keywords

Navigation