Skip to main content

Abstract

Proton-exchange composite membranes based on poly(vinyl alcohol)/BEA zeolite for direct methanol fuel cell were obtained. Poly(vinyl alcohol) was crosslinked with sulfosuccinic acid and doped with BEA zeolite. Proton conductivity, ion-exchange capacity, water uptake, swelling ratio, methanol permeability and mechanical properties of membranes were tested. An increase in the zeolite content leads to an increase in ion-exchange capacity and a decrease in water uptake and methanol permeability of membranes. The proton conductivity temperature dependence of composite membranes in the range from 30 to 80 °C and a 100% of relative humidity was studied. The best result was demonstrated by the membrane containing 25% BEA (proton conductivity −23.2 mS cm−1, the activation energy −26 kJ mol−1 K−1). The tensile strength increases with the addition of zeolite in 4 times, and the elongation at break decreases in more than 5 times (25% BEA sample) as compared to the membrane without additives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maiti, J., Kakati, N., Lee, S.H., Jee, S.H., Viswanathan, B., Yoon, Y.S.: Where do poly(vinyl alcohol) based membranes stand in relation to Nafion® for direct methanol fuel cell applications. J. Power Sources 216, 48–66 (2012). https://doi.org/10.1016/j.jpowsour.2012.05.057

    Article  Google Scholar 

  2. Dunn, S.: Hydrogen futures: toward a sustainable energy system. Int. J. Hydrogen Energy 27(3), 235–264 (2002). https://doi.org/10.1016/S0360-3199(01)00131-8

    Article  Google Scholar 

  3. McNicol, B.D., Rand, D.A.J., Williams, K.R.: Direct methanol-air fuel cells for road transportation. J. Power Sources 83(1–2), 15–31 (1999). https://doi.org/10.1016/S0378-7753(99)00244-X

    Article  Google Scholar 

  4. Sun, H., Wang, W., Koo, K.-P.: The practical implementation of methanol as a clean and efficient alternative fuel for automotive vehicles. Inter. J. Engine Res. 20(3), 350–358 (2019). https://doi.org/10.1177/1468087417752951

    Article  Google Scholar 

  5. Joghee, P., Malik, J., Pylypenko, S., O’Hayre, R.: A review on direct methanol fuel cells – In the perspective of energy and sustainability. MRS Energy Sustain. 2 (2015). https://doi.org/10.1557/mre.2015.4

  6. Adamson, K.-A., Pearson, P.: Hydrogen and methanol: a comparison of safety, economics, efficiencies and emissions. J. Power Sources 86(1–2), 548–555 (2000). https://doi.org/10.1016/S0378-7753(99)00404-8

    Article  Google Scholar 

  7. Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., Adroher, X.C.: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011). https://doi.org/10.1016/j.apenergy.2010.09.030

    Article  Google Scholar 

  8. Dhanapal, D., Xiao, M., Wang, S., Meng, Y.: A review on sulfonated polymer composite/organic-inorganic hybrid membranes to address methanol barrier issue for methanol fuel cells. Nanomaterials 9(5), 668 (2019). https://doi.org/10.3390/nano9050668

    Article  Google Scholar 

  9. Wong, C.Y., Wong, W.Y., Loh, K.S., Daud, W.R.W., Lim, K.L., Khalid, M., Walvekar, R.: Development of poly(vinyl alcohol)-based polymers as proton exchange membranes and challenges in fuel cell application: a review. Polym. Rev. 60(1), 171–202 (2020). https://doi.org/10.1080/15583724.2019.1641514

    Article  Google Scholar 

  10. Ghorbel, N., Kallel, A., Boufi, S.: Molecular dynamics of poly(vinyl alcohol)/cellulose nanofibrils nanocomposites highlighted by dielectric relaxation spectroscopy. Compos. Part A Appl. Sci. Manuf. 124, 105465 (2019). https://doi.org/10.1016/j.compositesa.2019.05.033

  11. Oliveira, P.N., Catarino, M., Müller, C.M.O., Brandão, L., Tanaka, P.D.A., Bertolino, J.R., Pires, A.T.N.: Preparation and characterization of crosslinked PVAL membranes loaded with boehmite nanoparticles for fuel cell applications. J. Appl. Polym. Sci. 131(18), 40148 (2013). https://doi.org/10.1002/app.40148

    Article  Google Scholar 

  12. Tripathi, B.P., Shahi, V.K.: Functionalized organic-inorganic nanostructured N-p-carboxy benzyl chitosan-silica-PVA hybrid polyelectrolyte complex as proton exchange membrane for DMFC applications. J. Phys. Chem. B 112(49), 15678–15690 (2008). https://doi.org/10.1021/jp806337b

    Article  Google Scholar 

  13. Beydaghi, H., Javanbakht, M., Badiei, A.: Cross-linked poly(vinyl alcohol)/sulfonated nanoporous silica hybrid membranes for proton exchange membrane fuel cell. J. Nanostruct. Chem. 4(2), 1–9 (2014). https://doi.org/10.1007/s40097-014-0097-y

    Article  Google Scholar 

  14. Navarra, M.A., Fernicola, A., Panero, S., Martinelli, A.A., Matic, A.: Effect of functionalized silica particles on cross-linked poly(vinyl alcohol) proton conducting membranes. J. Appl. Electrochem. 38, 931–938 (2008). https://doi.org/10.1007/s10800-008-9498-2

    Article  Google Scholar 

  15. Tutgun, M.S., Sinirlioglu, D., Celik, S.U., Bozkurt, A.: Investigation of nanocomposite membranes based on crosslinked poly(vinyl alcohol)–sulfosuccinic acid ester and hexagonal boron nitride. J. Polym. Res. 22, 47 (2015). https://doi.org/10.1007/s10965-015-0678-6

    Article  Google Scholar 

  16. Kakati, N., Das, G., Yoon, Y.S.: Proton-conducting membrane based on epoxy resin-poly(vinyl alcohol)-sulfosuccinic acid blend and its nanocomposite with sulfonated multiwall carbon nanotubes for fuel-cell application. J. Korean Phys. Soc. 68(2), 311–316 (2016). https://doi.org/10.3938/jkps.68.311

    Article  Google Scholar 

  17. Tomas, M., Remis, T., Gholami, F.: The determination of effective diffusion coefficient from the electrochemical impedance spectra of composite poly (vinyl alcohol) membranes. Environ. Prog. Sustain. Energy 38(5), e13195 (2019). https://doi.org/10.1002/ep.13195

    Article  Google Scholar 

  18. Ajith, C., Deshpande, A.P., Varughese, S.: Proton conductivity in crosslinked hydrophilic ionic polymer system: competitive hydration, crosslink heterogeneity, and ineffective domains. J. Polym. Sci. Part B: Polym. Phys. 54(11), 1087–1101 (2016). https://doi.org/10.1002/polb.24012

  19. Li, H.Q., Liu, H.J., Wang, H., Yang, H., Wang, Z.Z., He, J.: Proton exchange membranes with cross-linked interpenetrating network of sulfonated polyvinyl alcohol and poly(2-acrylamido-2-methyl-1-propanesulfonic acid): excellent relative selectivity. J. Membr. Sci. 595, 117511 (2010). https://doi.org/10.1016/j.memsci.2019.117511

    Article  Google Scholar 

  20. Zhou, T., Li, Y., Wang, W.W., He, L., Cai, L., Zeng, C.: Application of a novel PVA-based proton exchange membrane modified by reactive black KN-B for low-temperature fuel cells. Intern. J. Electrochem. Sci. 14, 8514–8531 (2019). https://doi.org/10.20964/2019.09.16

    Article  Google Scholar 

  21. Boroglu, M.S., Celik, S.U., Bozkurt, A., Boz, I.: The synthesis and characterization of anhydrous proton conducting membranes based on sulfonated poly(vinyl alcohol) and imidazole. J. Memb. Sci. 375(1–2), 157–164 (2011). https://doi.org/10.1016/j.memsci.2011.03.041

    Article  Google Scholar 

  22. Kim, D.S., Park, H.B., Rhim, J.W., Lee, Y.M.: Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes. Solid State Ionics 176(1–2), 117–126 (2005). https://doi.org/10.1016/j.ssi.2004.07.011

    Article  Google Scholar 

  23. Rodionova, L.I., Knyazeva, E.E., Konnov, S.V., Ivanova, I.I.: Application of nanosized zeolites in petroleum chemistry: synthesis and catalytic properties (review). Pet. Chem. 59(4), 455–470 (2019). https://doi.org/10.1134/S0965544119040133

    Article  Google Scholar 

  24. Marcos-Madrazo, A., Casado-Coterillo, C., García-Cruz, L., Iniesta, J., Simonelli, L., Sebastián, V., Encabo-Berzosa, M.M., Arruebo, M., Irabien, A.: Preparation and identification of optimal synthesis conditions for a novel alkaline anion-exchange membrane. Polymers 10(18), 913 (2018). https://doi.org/10.3390/polym10080913

    Article  Google Scholar 

Download references

Acknowledgments

The reported study was funded by RFBR, project number 18-08-00718. A. Chesnokova acknowledges financial support of INRTU (grant No 04-fpk-19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Pozhidaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chesnokova, A., Zhamsaranzhapova, T., Zakarchevskiy, S., Pozhidaev, Y. (2021). Polymer-Ceramic Proton Exchange Membranes for Direct Methanol Fuel Cells. In: Murgul, V., Pukhkal, V. (eds) International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019. EMMFT 2019. Advances in Intelligent Systems and Computing, vol 1259. Springer, Cham. https://doi.org/10.1007/978-3-030-57453-6_40

Download citation

Publish with us

Policies and ethics