Skip to main content

Advertisement

Log in

Effect of nano-composite on polyvinyl alcohol-based proton conducting membrane for direct methanol fuel cell applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Novel composite membranes composed of polyvinyl alcohol (PVA) as host with montmorillonite (MMT) were prepared by solution casting method. A maximum conductivity of 0.9527 S cm−1 was obtained at room temperature for the composite membrane of PVA (80)-H+MMT(20). Fourier transform infrared spectroscopy (FTIR) studies confirmed the functional groups present in the membranes. The exfoliation of composite material in polymer matrix was analyzed by X-ray diffraction (XRD) technique. The results of ion exchange capacity (IEC), water/methanol uptake, and swelling measurements were presented. The scanning electron microscopy (SEM) result also revealed uniform and homogeneous mixture of nano-composite particle of MMT. Simultaneous thermal analysis (STA) curves exposed an excellent thermal stability. Moreover, the conductivity results indicate that the prepared PVA/MMT composite membranes have a good electrochemical performance for recent trends in energy research. It is noticed that the low methanol uptake for the prepared membrane is a good candidate for the fuel cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee CH, Kim KA, Park HB, Hong YT, Jung BO, Lee YM (2007) J Membr Sci 303:258

    Article  CAS  Google Scholar 

  2. Lee W, Kim H, Lee H (2008) J Membr Sci 320:258

    Google Scholar 

  3. Kamarudin SK, Achmad F, Daud RW (2009) Int J Hydrog Energy 34:6902–6916

    Article  CAS  Google Scholar 

  4. Livshits V, Philosoph M, Plead E (2008) J Power Sources 178:287–291

    Article  Google Scholar 

  5. Song SQ, Zhou WJ, Zho ZH, Jiang LH, Sun SQ, Xin Q (2005) Int J Hydrog Energy 30:995–1001

    Article  CAS  Google Scholar 

  6. Ahmad H, Kammaradin SK, Hasran UA, Wan Daud WR (2010) Int J Hydrog Energy 35:2160–2175

    Article  CAS  Google Scholar 

  7. Hasani-sadrabadi MM, Dashtimogodam E, Srikhani K, Majedi FS, Khanabalaei G (2010) J Power Sources 195:2450–2456

    Article  CAS  Google Scholar 

  8. Tsai L-E, Lin C-W, Hwang B-J (2010) J Power Sources 195:2166–2173

    Article  CAS  Google Scholar 

  9. Hasani-sadrabadi MM, Dashtimogodam E, Majedi FS, Kabari K, Solati Hashijin M, Moaddel H (2010) J Membr Sci 365:286

    Article  CAS  Google Scholar 

  10. Pivovar BS, Wang Y, Cussler EL (1999) J Membr Sci 154:155–162

    Article  CAS  Google Scholar 

  11. Chiang WY, Hu CM (1991) J Appl Polym Sci 43:2005–2012

    Article  CAS  Google Scholar 

  12. Rhim JW, Yeom CK, Kim SW (1998) J Appl Polym Sci 68:1717–1723

    Article  CAS  Google Scholar 

  13. Rhee CH, Kim HK, Chang H, Lee JS (2005) Chem Mater 17:1691–1697

    Article  CAS  Google Scholar 

  14. Chen ZW, Holmberg B et al (2006) Chem Mater 18:5669–5675

    Article  CAS  Google Scholar 

  15. Lin YF, Yen CY et al (2007) J Power Sources 165:692–700

    Article  CAS  Google Scholar 

  16. Pourcelly G, Gavach C, Colomban P (1992) Proton conductors. Cambridge University Press, New York, p 45

    Google Scholar 

  17. Sengwa RJ, Sankhla S, Shobhna C (2010) Indian J Pure Appl Phys 48:196–204

    CAS  Google Scholar 

  18. Bandi S, Schiraldi DA (2006) Macromolecules 39:6537

    Article  CAS  Google Scholar 

  19. Misra AK, Kuila T, Kim NH, Lee JH (2012) J Membr Sci 389:316–323

    Article  Google Scholar 

  20. Wu CS, Lin FY, Chen CY, Chu PP (2006) J Power Sources 160:1204–1210

    Article  CAS  Google Scholar 

  21. Kadir MFZ, Aspanut Z, Majid SR, Arof AK (2011) Spectrochim Acta A 78:1068–1074

    Article  CAS  Google Scholar 

  22. Yang CC, Wu GM (2009) Mater Chem Phys 114:948

    Article  CAS  Google Scholar 

  23. Tsai J-C, Cheng H-P, Kuo J-F, Huang Y-H, Chen C-Y (2009) J Power Sources 189:958–965

    Article  CAS  Google Scholar 

  24. Silva RF, Passerini S, Pozio A (2005) Electrochim Acta 50:3280

    Article  Google Scholar 

  25. Song M-K, Park S-B, Kim Y-T, Kim S-K, Rhee H-W (2004) Electrochim Acta 50:639

    Article  CAS  Google Scholar 

  26. Jung DH, Cho SY, Peck DH, Shin DR, Kim JS (2003) J Power Sources 118:205

    Article  CAS  Google Scholar 

  27. Thomassin JM, Pagnoulle C, Bizzari D, Caldarella G, Germain A, Jerome R (2006) Solid State Ionics 177:1137

    Article  CAS  Google Scholar 

  28. Gosalawit R, Chirachanchai S, Manuspiya H, Traversa E (2006) Catal Today 118:259

    Article  CAS  Google Scholar 

  29. Shao ZG, Wang X, Hsing IM (2002) J Membr Sci 210:147

    Article  CAS  Google Scholar 

  30. Yang CC (2011) Int J Hydrog Energy 36:4419–4431

    Article  CAS  Google Scholar 

  31. Vaia RA, Ishii H, Giannelis EP (1993) Chem Mater 5:1694–1696

    Article  CAS  Google Scholar 

  32. Yang T (2008) Int J Hydrog Energy 33:6772–6779

    Article  CAS  Google Scholar 

  33. Yang T (2009) Int J Hydrog Energy 34:6917–6924

    Article  CAS  Google Scholar 

  34. Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539

    Article  CAS  Google Scholar 

  35. Chisholm BJ, Moore RB, Barber G et al (2002) Macromolecules 35:5508

    Article  CAS  Google Scholar 

  36. Pattabi M, Amma BS, Manzoor K (2007) Mater Res Bull 42:828

    Article  CAS  Google Scholar 

  37. Sapalidis AA, Katsaros FK, Kanellopoulos NK (2011) Nanocomposites and polymers with analytical methods, John Cuppoletti (ed) p. 38

  38. Radovanovic P, Kellner M et al (2012) J Membr Sci 401:254–261

    Article  Google Scholar 

  39. Mahmoudian S, Wahit MU et al (2012) Carbohydr Polym 88:1251–1257

    Article  CAS  Google Scholar 

  40. Mondal M, Chattopadhyay PK et al (2010) Thermochim Acta 510:185–194

    Article  CAS  Google Scholar 

  41. Isci S, Unlu CH, Atici O, Gungor N (2006) Bull Mater Sci 29:449–456

    Article  CAS  Google Scholar 

  42. Yang CC, Chiu SJ, Kuo SC (2011) Curr Appl Phys 11:S229–S237

    Article  Google Scholar 

  43. Yang CC, Lin CW (2008) Desalination 233:137–146

    Article  CAS  Google Scholar 

  44. Sun L, Boo WJ, Clearfield A, Sue HJ, Pham HQ (2008) J Membr Sci 318:129–136

    Article  CAS  Google Scholar 

  45. Wang Y, Zhang H, Wu Y, Yang J, Zhang L (2005) Eur Polym J 41:2776–2783

    Article  CAS  Google Scholar 

  46. Dashtimogadam E et al (2011) Int J Hydrog Energy 36:3688–3696

    Article  Google Scholar 

  47. Kreuer KD (2001) J Membr Sci 185:29–39

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kannan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahavan Palani, P., Kannan, R., Rajashabala, S. et al. Effect of nano-composite on polyvinyl alcohol-based proton conducting membrane for direct methanol fuel cell applications. Ionics 21, 507–513 (2015). https://doi.org/10.1007/s11581-014-1193-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1193-1

Keywords

Navigation