Skip to main content
Log in

Electrodeposition of ZnO coatings from aqueous Zn(NO3)2 baths: effect of Zn concentration, deposition temperature, and time on orientation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Cathodic reduction of zinc nitrate solution results in the deposition of ZnO crystallites with a strong c-axis orientation. The orientation of crystallites can be switched to 10l (l = 1, 2, 3) direction by varying the bath concentration (0.04–0.1 M) and the deposition conditions (T, 50–70 °C; t, 30–90 min). The range of concentrations yielding c-axis orientation can be widened at a high deposition temperature. At 0.1 M bath concentration and long deposition times, crystallites are oriented along 10l (l = 3) direction. At low temperature (50 °C), 100 oriented nanostructured ZnO coatings are obtained (crystallite size, 20–35 nm). The c-axis-oriented crystallites grow as hexagonal columns perpendicular to substrate and 10l-oriented crystallites grow tilted at different angles to the substrate surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Switzer JA, Shane MJ, Phillips RJ (1990) Science 247:444–446

    Article  CAS  Google Scholar 

  2. Park WI, Yi GC (2004) Adv Mater 16:87–90

    Article  CAS  Google Scholar 

  3. Hartangel HL, Dawar AL, Jain AK, Jagadish C (1995) Semiconducting transparent thin films. Institute of Physics, Bristol

    Google Scholar 

  4. Jacobs H, Makowa W, Kohi D, Heiland G (1985) Surf Sci 160:217–234

    Article  CAS  Google Scholar 

  5. Hosono E, Fujihara S, Kimuna T (2004) Electrochem Solid-state Lett 7:C49–C51

    Article  CAS  Google Scholar 

  6. Pern AS (1994) Am Ceram Soc Bull 73:139–152

    Google Scholar 

  7. Segawa Y, Ohtomo A, Kawasaki K, Koinuma H, Tang ZK, Yu P, Wong KL (1997) Phys Status Solidi A 202:669–672

    Article  CAS  Google Scholar 

  8. Stolt L, Hedstrom J, Ruckh M, Kessler J, Velthaus KO, Schock HW (1993) Appl Phy Lett 62:597–599

    Article  CAS  Google Scholar 

  9. Gorla CR, Emanetoglu NW, Liang S, Mayo WE, Lu Y, Wraback M, Shen H (1999) J Appl Phy 85:2595–2602

    Article  CAS  Google Scholar 

  10. Sang B, Konagai M (1996) J Appl Phy 35:602–605

    Article  Google Scholar 

  11. Bae SY, Seo HW, Park J (2004) J Phy Chem B 108:5206–5210

    Article  CAS  Google Scholar 

  12. Izaki M, Omi T (1996) J Electrochem Soc 143:L53–L55

    Article  CAS  Google Scholar 

  13. Izaki M, Omi T (1996) Appl Phys Lett 68:2439–2440

    Article  CAS  Google Scholar 

  14. Izaki M, Omi T (1997) J Electrochem Soc 144:1949–1952

    Article  CAS  Google Scholar 

  15. Peulon S, Lincot D (1996) Adv Mater 8:166–169

    Article  CAS  Google Scholar 

  16. Peulon S, Lincot D (1998) J Electrochem Soc 145:864–874

    Article  CAS  Google Scholar 

  17. Pauporte T, Lincot D (1999) Appl Phys Lett 75:3817–3819

    Article  CAS  Google Scholar 

  18. Pauporte T, Lincot D (2000) Electrochim Acta 45:3345–3353

    Article  CAS  Google Scholar 

  19. Canava B, Lincot D (2000) J Appl Electrochem 30:711–716

    Article  CAS  Google Scholar 

  20. Pauporte T, Lincot D (2001) J Electrochem Soc 148:C310–C314

    Article  CAS  Google Scholar 

  21. Pauporte T, Lincot D (2001) J Electroanal Chem 517:54–62

    Article  CAS  Google Scholar 

  22. Pauporte T, Cortes R, Froment M, Beaumont B, Lincot D (2002) Chem Mater 14:4702–4708

    Article  CAS  Google Scholar 

  23. Goux A, Pauporte T, Chivot J, Lincot D (2005) Electrochim Acta 50:2239–2248

    Article  CAS  Google Scholar 

  24. Liu R, Vertegel AA, Bohannan EW, Sorenson TA, Switzer JA (2001) Chem Mater 13:508–512

    Article  CAS  Google Scholar 

  25. Limmer SJ, Kulp EA, Switzer JA (2006) Langmuir 22:10535–10539

    Article  CAS  Google Scholar 

  26. Pradhan D, Leung KT (2008) Langmuir 24:9707–9716

    Article  CAS  Google Scholar 

  27. Li GR, Dawa CR, Bu Q, Lu XH, Ke ZH, Hong HE, Zhen FL, Yao CH, Liu GK, Tong YX (2007) J Phy Chem C 111:1919–1923

    Article  CAS  Google Scholar 

  28. Prasad BE, Kamath PV (2010) J Solid State Electrochem 14:2083–2088

    Article  CAS  Google Scholar 

  29. Birkenstock J, Fischer RX, Messner Th (2012) http://www.brass.uni_bremen.dc/, BRASS v.2.0.0, 20.12.2006

  30. Meyer B, Marx D (2003) Phy Rev B 67:035403-1–035403-11

    Google Scholar 

  31. Li WJ, Shi EW, Zhong WZ, Yin ZW (1999) J Cryst Grow 203:186–196

    Article  CAS  Google Scholar 

  32. Wang ZL (2004) J Phy: Condens Matter 16:R829–R858

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology (DST), Government of India (GOI) for financial support. BEP acknowledges the Council of Scientific and Industrial Research, GOI for the award of a Senior Research Fellowship. PVK is a recipient of the Ramanna Fellowship of the DST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vishnu Kamath.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 203 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, B.E., Kamath, P.V. & Ranganath, S. Electrodeposition of ZnO coatings from aqueous Zn(NO3)2 baths: effect of Zn concentration, deposition temperature, and time on orientation. J Solid State Electrochem 16, 3715–3722 (2012). https://doi.org/10.1007/s10008-012-1804-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1804-6

Keywords

Navigation