Skip to main content
Log in

Structural, optical, photocurrent and mechanism-induced photocatalytic properties of surface-modified ZnS thin films by chemical bath deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnS thin films were prepared by chemical bath codeposition using ZnSO4–ZnCl2 or Zn(CH3COO)2–ZnCl2 as zinc ion sources. The presence of SO4 2− favors the heterogeneous growth of ZnS thin film. The coexistence of two zinc salts impedes the formation of homogeneous precipitation and improves the growth rate of ZnS film. XRD and HRTEM results show that all the samples exhibit the cubic structure. EDS analysis shows that Zn/S atom ratios from the codeposition are closer to 1:1 than those deposited from a single zinc salt, and ZnS thin films of S3 and S7 are very uniform without stirring. FTIR reveals that –NH2 group as a surface modifier is adsorbed on the surface of ZnS nanoparticles. Raman spectra further reveal that S3, S4 and S7 form the ZnS films, and ZnO phase is present in short or middle range of the S6 nanocrystal, indicating that different amounts of zinc salts affect the structure of ZnS films significantly after three 2.5 h deposition cycles. The grain sizes determined by FESEM are inversely proportional to RMS determined by AFM. The band gap values of ZnS thin films agree well with the results of HRTEM. The photocurrent responses of different samples are similar, indicating that different amounts of zinc salts have little effect on the photocurrent of ZnS films. The photocatalytic performance of S6 and S8 is much better than that of S1–S5. S6 decomposes 65 % of methyl orange within 3 h, and its K value is 4.78 × 10−1 h−1. The photocatalytic performance is induced by the growth mechanism, which determines the grain size of ZnS thin film. The tendency of grain sizes of ZnS films agrees well with that of photocatalytic performance, especially under the clusters by clusters deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F. Lu, W.P. Cai, Y.G. Zhang, Y. Li, F.Q. Sun, Fabrication and field-emission performance of zinc sulfide nanobelt arrays. J. Phys. Chem. C 111, 13385–13392 (2007)

    Article  Google Scholar 

  2. K. Manzoor, S.R. Vadera, N. Kumar, T.R.N. Kutty, Synthesis and photoluminescent properties of ZnS nanocrystals doped with copper and halogen. Mater. Chem. Phys. 82, 718–725 (2003)

    Article  Google Scholar 

  3. Y. Zhang, X.Y. Dang, J. Jin, T. Yu, B.Z. Li, Q. He, F.Y. Li, Y. Sun, ZnS thin film deposited with chemical bath deposition process directed by different stirring speeds. Appl. Surf. Sci. 256, 6871–6875 (2010)

    Article  Google Scholar 

  4. Y. Liao, F. Yu, L. Long, B. Wei, L. Lu, J. Zhang, Low-cost and reliable thin film encapsulation for organic light emitting diodes using magnesium fluoride and zinc sulfide. Thin Solid Films 519, 2344–2348 (2011)

    Article  Google Scholar 

  5. W. Daranfed, M.S. Aida, A. Hafdallah, H. Lekiket, Substrate temperature influence on ZnS thin films prepared by ultrasonic spray. Thin Solid Films 518(4), 1082–1084 (2009)

    Article  Google Scholar 

  6. P. Roy, J.R. Ota, S.K. Srivastava, Crystalline ZnS thin films by chemical bath deposition method and its characterization. Thin Solid Films 515, 1912–1917 (2006)

    Article  Google Scholar 

  7. C.M. Huang, L.C. Chen, G.T. Pan, T.C.K. Yang, W.S. Chang, K.W. Cheng, Effect of Ni on the growth and photoelectrochemical properties of ZnS thin films. Mater. Chem. Phys. 117, 156–162 (2009)

    Article  Google Scholar 

  8. S.M.B. Ghorashi, A. Behjat, M. Neghabi, G. Mirjalili, Effects of air annealing on the optical, electrical, and structural properties of nanostructured ZnS/Au/ZnS films. Appl. Surf. Sci. 257, 1602–1606 (2010)

    Article  Google Scholar 

  9. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, ZnS nanostructures: from synthesis to applications. Prog. Mater Sci. 56, 175–287 (2011)

    Article  Google Scholar 

  10. X.S. Fang, Y. Bando, M.Y. Liao, U.K. Gautam, C.Y. Zhi, B. Dierre, B.D. Liu, T.Y. Zhai, T. Sekiguchi, Y. Koide, D. Golberg, Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv. Mater. 21, 2034–2039 (2009)

    Article  Google Scholar 

  11. X.S. Fang, Y. Bando, M.Y. Liao, T.Y. Zhai, U.K. Gautam, L. Li, Y. Koide, D. Golberg, An efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability. Adv. Funct. Mater. 20, 500–508 (2010)

    Article  Google Scholar 

  12. M. Stefan, E.J. Popovici, O. Pana, E. Indrea, Synthesis of luminescent zinc sulphide thin films by chemical bath deposition. J. Alloys Compd. 548, 166–172 (2013)

    Article  Google Scholar 

  13. J.M. Doña, J. Herrero, Process and film characterization of chemical-bath-deposited ZnS thin film. J. Electrochem. Soc. 141, 205–210 (1994)

    Article  Google Scholar 

  14. S. Siebentritt, Alternative buffers for chalcopyrite solar cells. Sol. Energy 77, 767–775 (2004)

    Article  Google Scholar 

  15. U. Gangopadhyay, K. Kim, D. Mangalaraj, J. Yi, Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells. Appl. Surf. Sci. 230, 364–370 (2004)

    Article  Google Scholar 

  16. J. Cheng, D.B. Fan, H. Wang, B.W. Liu, Y.C. Zhang, H. Yan, Chemical bath deposition of crystalline ZnS thin films. Semicond. Sci. Technol. 18, 676–679 (2003)

    Article  Google Scholar 

  17. R.S. Mane, C.D. Lokhande, Chemical deposition method for metal chalcogenide thin films. Mater. Chem. Phys. 65, 1–31 (2000)

    Article  Google Scholar 

  18. E.J. Ibanga, C.L. Luyer, J. Mugnier, Zinc oxide waveguide produced by thermal oxidation of chemical bath deposited zinc sulphide thin films. Mater. Chem. Phys. 80, 490–495 (2003)

    Article  Google Scholar 

  19. J. Britt, C. Ferekides, Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 62, 2851–2852 (1993)

    Article  Google Scholar 

  20. J.M. Doña, J. Herrero, Chemical bath codeposited CdS-ZnS film characterization. Thin Solid Films 268, 5–12 (1995)

    Article  Google Scholar 

  21. J. Vidal, O. Vigil, O. de Melo, N. Lopez, O.Z. Angel, Influence of NH3 concentration and annealing in the properties of chemical bath deposited ZnS films. Mater. Chem. Phys. 61, 139–142 (1999)

    Article  Google Scholar 

  22. Q. Liu, G.B. Mao, J.P. Ao, Chemical bath-deposited ZnS thin films: preparation and characterization. Appl. Surf. Sci. 254, 5711–5714 (2008)

    Article  Google Scholar 

  23. B. Asenjo, A.M. Chaparro, M.T. Gutiérrez, J. Herrero, J. Klaer, Study of CuInS2/ZnS/ZnO solar cells, with chemically deposited ZnS buffer layers from acidic solutions. Sol. Energy Mater. Sol. Cells 92, 302–306 (2008)

    Article  Google Scholar 

  24. H. Ke, S.W. Duo, T.Z. Liu, Q. Sun, C.X. Ruan, X.Y. Fei, J.L. Tan, S. Zhan, Effect of temperature on structural and optical properties of ZnS thin films by chemical bath deposition without stirring the reaction bath. Mater. Sci. Semicond. Process. 18, 28–35 (2014)

    Article  Google Scholar 

  25. A.X. Wei, J. Liu, M.X. Zhuang, Y. Zhao, Preparation and characterization of ZnS thin films prepared by chemical bath deposition. Mater. Sci. Semicond. Process. 16, 1478–1484 (2013)

    Article  Google Scholar 

  26. T.B. Nasr, N. Kamoun, C. Guasch, Physical properties of ZnS thin films prepared by chemical bath deposition. Appl. Surf. Sci. 254, 5039–5043 (2008)

    Article  Google Scholar 

  27. W. Vallejo, M. Hurtado, G. Gordillo, Kinetic study on Zn(O, OH)S thin films deposited by chemical bath deposition. Electrochim. Acta 55, 5610–5616 (2010)

    Article  Google Scholar 

  28. W. Vallejo, C. Quińones, G. Gordillo, A comparative study of thin films of Zn(O; OH)S and In(O; OH)S deposited on CuInS2 by chemical bath deposition method. J. Phys. Chem. Solids 73, 573–578 (2012)

    Article  Google Scholar 

  29. A. Antony, K.V. Murali, R. Manoj, M.K. Jayaraj, The effect of the pH value on the growth and properties of chemical-bath-deposited ZnS thin films. Mater. Chem. Phys. 90, 106–110 (2005)

    Article  Google Scholar 

  30. P.A. Luque, C.M.G. Gutiérrez, G. Lastra, A.C. Castillo, M.A.Q. López, A. Olivas, Role of zinc source in chemical bath deposition of zinc sulfide thin films on Si3N4. J. Electron. Mater. 43, 4317–4321 (2014)

    Article  Google Scholar 

  31. M. Cao, B.L. Zhang, L. Li, J. Huang, S.R. Zhao, H. Cao, J.C. Jiang, Y. Sun, Y. Shen, Effects of zinc salts on the structural and optical properties of acidic chemical bath deposited ZnS thin films. Mater. Res. Bull. 48, 357–361 (2013)

    Article  Google Scholar 

  32. T.Z. Liu, H. Ke, H. Zhang, S.W. Duo, Q. Sun, X.Y. Fei, G.Y. Zhou, H. Liu, L.J. Fan, Effect of four different zinc salts and annealing treatment on growth, structural, mechanical and optical properties of nanocrystalline ZnS thin films by chemical bath deposition. Mater. Sci. Semicond. Process. 26, 301–311 (2014)

    Article  Google Scholar 

  33. T.Z. Liu, Y.Y. Li, H. Ke, Y.H. Qian, S.W. Duo, Y.L. Hong, X.Y. Sun, Chemical bath co-deposited ZnS film prepared from different zinc salts: ZnSO4–Zn(CH3COO)2, Zn(NO3)2–Zn(CH3COO)2, and ZnSO4–Zn(NO3)2. J. Mater. Sci. Technol. 32, 207–217 (2016)

    Article  Google Scholar 

  34. K. Kočí, L. Matějová, O. Kozák, L. Čapek, V. Valeš, M. Reli, P. Praus, K. Safářová, A. Kotarba, L. Obalová, ZnS/MMT nanocomposites: the effect of ZnS loading in MMT on the photocatalytic reduction of carbon dioxide. Appl. Catal. B Environ. 158–159, 410–417 (2014)

    Google Scholar 

  35. X.J. Xu, L.F. Hu, N. Gao, S.X. Liu, S. Wageh, A.A.A. Ghamdi, A. Alshahrie, X.S. Fang, Controlled growth from ZnS nanoparticles to ZnS–CdS nanoparticle hybrids with enhanced photoactivity. Adv. Funct. Mater. 25, 445–454 (2015)

    Article  Google Scholar 

  36. C. Lu, C.Z. Liu, R. Chen, X.X. Fang, K. Xu, D.W. Meng, Synthesis and characterization of ZnO/ZnS/CuS ternary nanocomposites as high efficient photocatalyst in visible light. J. Mater. Sci. Mater. Electron. 27, 6947–6954 (2016)

    Article  Google Scholar 

  37. Y. Tian, G.F. Huang, L.J. Tang, M.G. Xia, W.Q. Huang, Z.L. Ma, Size-controllable synthesis and enhanced photocatalytic activity of porous ZnS nanospheres. Mater. Lett. 83, 104–107 (2012)

    Article  Google Scholar 

  38. Y. Chen, G.F. Huang, W.Q. Huang, L.L. Wang, Y. Tian, Z.L. Ma, Z.M. Yang, Annealing effects on photocatalytic activity of ZnS films prepared by chemical bath deposition. Mater. Lett. 75, 221–224 (2012)

    Article  Google Scholar 

  39. Y. Chen, G.F. Huang, W.Q. Huang, B.S. Zou, A. Pan, Enhanced visible-light photoactivity of La-doped ZnS thin films. Appl. phys. A Mater. 108, 895–900 (2012)

    Article  Google Scholar 

  40. Y.F. Chai, G.F. Huang, L.L. Wang, W.Q. Huang, J. Zhou, Enhanced photocatalytic activity and stability of ZnxCd1−xS/TiO2 nanocomposites synthesized by chemical bath deposition. Mater. Lett. 142, 133–136 (2015)

    Article  Google Scholar 

  41. S.D. Sartale, B.R. Sankapal, M.L. Steiner, A. Ennaoui, Preparation of nanocrystalline ZnS by a new chemical bath deposition route. Thin Solid Films 480–481, 168–172 (2005)

    Article  Google Scholar 

  42. J.A. Dean, Lange’s Handbook of Chemistry, 13th edn. (McGraw-Hill Book Company, New York, 1987), p. 5

    Google Scholar 

  43. P. Roy, S.K. Srivastava, A new approach towards the growth of cadmium sulphide thin film by CBD method and its characterization. Mater. Chem. Phys. 95, 235–241 (2006)

    Article  Google Scholar 

  44. D.A. Johnston, M.H. Carletto, K.T.R. Reddy, I. Forbes, R.W. Miles, Chemical bath deposition of zinc sulfide based buffer layers using low toxicity materials. Thin Solid Films 403–404, 102–106 (2002)

    Article  Google Scholar 

  45. D. Lincot, R.O. Borges, Chemical Bath deposition of cadmium sulfide thin films. In situ growth and structural studies by combined quartz crystal microbalance and electrochemical impedance techniques. J. Electrochem. Soc. 139, 1880–1889 (1992)

    Article  Google Scholar 

  46. W.L. Liu, C.S. Yang, S.H. Hsieh, W.J. Chen, C.L. Fern, Effect of deposition variables on properties of CBD ZnS thin films prepared in chemical bath of ZnSO4/SC(NH2)2/Na3C3H5O7/NH4OH. Appl. Surf. Sci. 264, 213–218 (2013)

    Article  Google Scholar 

  47. A.K. Kole, S. Gupta, P. Kumbhakar, P.C. Ramamurthy, Nonlinear optical second harmonic generation in ZnS quantum dots and observation on optical properties of ZnS/PMMA nanocomposites. Opt. Commun. 313, 231–237 (2014)

    Article  Google Scholar 

  48. G. Murugadoss, Synthesis, optical, structural and thermal characterization of Mn2+ doped ZnS nanoparticles using reverse micelle method. J. Lumin. 131, 2216–2223 (2011)

    Article  Google Scholar 

  49. T.A. Safeera, N. Johns, E.I. Anila, A.I. Martinez, P.V. Sreenivasan, R. Reshmi, M. Sudhanshu, M.K. Jayaraj, Low temperature fabrication and characterization of wurtzite structured ZnS quantum dots by chemical spray pyrolysis. J. Anal. Appl. Pyrol. 115, 96–102 (2015)

    Article  Google Scholar 

  50. X.B. Zhang, H.W. Song, L.X. Yu, T. Wang, X.G. Ren, X.G. Kong, Y.H. Xie, X.J. Wang, Surface states and its influence on luminescence in ZnS nanocrystallite. J. Lumin. 118, 251–256 (2006)

    Article  Google Scholar 

  51. S.N. Azizi, M.J. Chaichi, P. Shakeri, A. Bekhradnia, Determination of atropine using Mn-doped ZnS quantum dots as novel luminescent sensitizers. J. Lumin. 144, 34–40 (2013)

    Article  Google Scholar 

  52. L.J. Feng, C.Y. Wang, Z.L. Ma, C.L. Lü, 8-Hydroxyquinoline functionalized ZnS nanoparticles capped with amine groups: a fluorescent nanosensor for the facile and sensitive detection of TNT through fluorescence resonance energy transfer. Dyes Pigments 97, 84–91 (2013)

    Article  Google Scholar 

  53. M. Pal, N.R. Mathews, E.R. Morales, J.M.G. Jiménez, X. Mathew, Synthesis of Eu+3 doped ZnS nanoparticles by a wet chemical route and its characterization. Opt. Mater. 35, 2664–2669 (2013)

    Article  Google Scholar 

  54. D.A. Reddy, C.L. Liu, R.P. Vijayalakshmi, B.K. Reddy, Effect of Al doping on the structural, optical and photoluminescence properties of ZnS nanoparticles. J. Alloys Compd. 582, 257–264 (2014)

    Article  Google Scholar 

  55. J. Serrano, A. Cantarero, M. Cardona, N. Garro, R. Lauck, R.E. Tallman, T.M. Ritter, B.A. Weinstein, Raman scattering in β-ZnS. Phys. Rev. B 69, 014301 (2004)

    Article  Google Scholar 

  56. S. Kumar, C.L. Chen, C.L. Dong, Y.K. Ho, J.F. Lee, T.S. Chan, R. Thangavel, T.K. Chen, B.H. Mok, S.M. Rao, M.K. Wu, Room temperature ferromagnetism in Ni doped ZnS nanoparticles. J. Alloys Compd. 554, 357–362 (2013)

    Article  Google Scholar 

  57. M. Hossu, R.O. Schaeffer, L. Ma, W. Chen, Y.B. Zhu, R. Sammynaiken, A.G. Joly, On the luminescence enhancement of Mn2+ by co-doping of Eu2+ in ZnS: Mn, Eu. Opt. Mater. 35, 1513–1519 (2013)

    Article  Google Scholar 

  58. R. Cuscó, E.A. Lladó, J. Ibáñez, L. Artús, Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 75, 165202 (2007)

    Article  Google Scholar 

  59. H.X. Li, M.X. Xia, G.Z. Dai, H.C. Yu, Q.L. Zhang, A.L. Pan, T.H. Wang, Y.G. Wang, B.S. Zou, Growth of oriented zinc oxide nanowire array into novel hierarchical structures in aqueous solutions. J. Phys. Chem. C 112, 17546–17553 (2008)

    Article  Google Scholar 

  60. S. Kumar, P.D. Sahare, Observation of band gap and surface defects of ZnO nanoparticles synthesized via hydrothermal route at different reaction temperature. Opt. Commun. 285, 5210–5216 (2012)

    Article  Google Scholar 

  61. X.S. Fang, L.M. Wu, L.F. Hu, ZnS nanostructure arrays: a developing material star. Adv. Mater. 23, 585–598 (2011)

    Article  Google Scholar 

  62. Y. Lei, F.F. Chen, R. Li, J. Xu, A facile solvothermal method to produce graphene–ZnS composites for superior photoelectric applications. Appl. Surf. Sci. 308, 206–210 (2014)

    Article  Google Scholar 

  63. L.H. Yu, H. Ruan, Y. Zheng, D.Z. Li, A facile solvothermal method to produce ZnS quantum dots-decorated graphene nanosheets with superior photoactivity. Nanotechnology 24, 375601 (2013)

    Article  Google Scholar 

  64. M. Sookhakian, Y.M. Amin, R. Zakaria, W.J. Basirun, M.R. Mahmoudian, B.N. Tabrizi, S. Baradaran, M. Azarang, Significantly improved photocurrent response of ZnS-reduced graphene oxide composites. J. Alloys Compd. 632, 201–207 (2015)

    Article  Google Scholar 

  65. L.H. Yu, W. Chen, D.Z. Li, J.B. Wang, Y. Shao, M. He, P. Wang, X.Z. Zheng, Inhibition of photocorrosion and photoactivity enhancement for ZnO via specific hollow ZnO core/ZnS shell structure. Appl. Catal. B Environ. 164, 453–461 (2015)

    Article  Google Scholar 

  66. S.H. Xu, L. Fu, T. Song, H. Pham, A. Yu, F.G. Han, L. Chen, Preparation of ZnO flower/reduced graphene oxide composite with enhanced photocatalytic performance under sunlight. Ceram. Int. 41, 4007–4013 (2015)

    Article  Google Scholar 

  67. W.Q. Peng, G.V. Cong, S.C. Qu, Z.G. Wang, Synthesis and photoluminescence of ZnS: Cu nanoparticles. Opt. Mater. 29, 313–317 (2006)

    Article  Google Scholar 

  68. S.S. Kumar, M.A. Khadar, K.G.M. Nair, Analysis of the effect of annealing on the photoluminescence spectra of Cu+ ion implanted ZnS nanoparticles. J. Lumin. 131, 786–789 (2011)

    Article  Google Scholar 

  69. S.R. Chalana, R. Vinodkumar, I. Navas, V. Ganesan, V.P.M. Pillai, Influence of argon ambience on the structural, morphological and optical properties of pulsed laser ablated zinc sulfide thin films. J. Lumin. 132, 944–952 (2012)

    Article  Google Scholar 

  70. T.R. Giraldi, G.V.F. Santos, V.R. Mendonca, C. Ribeiro, I.T. Weber, Annealing effects on the photocatalytic activity of ZnO nanoparticles. J. Nanosci. Nanotechnol. 11, 3635–3640 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate the financial supports of National Natural Science Foundation of China (No. 51363007), Natural Science Foundation of Jiangxi Province (No. 20132BAB206033), Foundation of Jiangxi Educational Commission (Nos. GJJ14588 and KJLD13070), Project of Jiangxi Youth Scientist (No. 20122BCB23031), and Science Foundation of Jiangxi Science and Technology Normal University (Nos. 2014QNBJRC005, 2015CXTD003 and 3000990328).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuwang Duo or Tingzhi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, Z., Duo, S. et al. Structural, optical, photocurrent and mechanism-induced photocatalytic properties of surface-modified ZnS thin films by chemical bath deposition. J Mater Sci: Mater Electron 28, 28–42 (2017). https://doi.org/10.1007/s10854-016-5489-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5489-y

Keywords

Navigation