Skip to main content
Log in

Synthesis of nanocrystalline ZnO by the thermal decomposition of [Zn(H2O)(O2C5H7)2] in isoamyl alcohol

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

It was studied how the conditions of heat treatment of a [Zn(H2O)(O2C5H7)2] solution in isoamyl alcohol at 120–140°C for 2–60 min affect the precursor decomposition mechanism and the characteristics of the obtained nanocrystalline zinc oxide. In all the cases, the product was a crystalline substance with the wurtzite structure and a size of crystallites of 14–18 nm, which was independent of the synthesis conditions. The thermal behavior and microstructure of the separated and dried nanostructured ZnO powder were investigated. It was determined how the duration and temperature of the heat treatment of the precursor solution affects the microstructure of ZnO coatings dip-coated onto glass substrates using dispersions produced at 120 and 140°C. The nanosized ZnO application procedure was shown to be promising for creating a gas-sensing layer of chemical gas sensors for detecting 1% H2 (\(R_0 /R_{H_2 } \) was 58 ± 2 at an operating temperature of 300°C) and 4 ppm NO2 (\(R_{NO_2 } /R_0\) were 15 ± 1 and 1.9 ± 0.1 at operating temperatures of 200 and 300°C, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Wang, X. Yang, W. Yang, et al., Appl. Surf. Sci. 398, 97 (2017). doi 10.1016/j.apsusc.2016.12.035

    Article  CAS  Google Scholar 

  2. K. P. Madhuri, K. Bramhaiah, and N. S. John, Mater. Res. Express 3, 035004 (2016). doi 10.1088/2053-1591/3/3/035004

    Article  Google Scholar 

  3. K. Bramhaiah, V. N. Singh, and N. S. John, Phys. Chem. Chem. Phys. 18, 1478 (2016). doi 10.1039/C5CP05081B

    Article  CAS  Google Scholar 

  4. H. Yin, K. Yu, C. Song, et al., ACS Appl. Mater. Interfaces 6, 14851 (2014). doi 10.1021/am501549n

    Article  CAS  Google Scholar 

  5. J. Wu, X. Shen, L. Jiang, et al., Appl. Surf. Sci. 256, 2826 (2010). doi 10.1016/j.apsusc.2009.11.034

    Article  CAS  Google Scholar 

  6. N. Tamaekong, C. Liewhiran, A. Wisitsoraat, and S. Phanichphat, Sensors 9, 6652 (2009). doi 10.3390/ s90906652

    Article  CAS  Google Scholar 

  7. N. Tamaekong, C. Liewhiran, A. Wisitsoraat, and S. Phanichphant, Sens. Actuat. 152B, 155 (2011). doi 10.1016/j.snb.2010.11.058

    Article  Google Scholar 

  8. W. Shen, Y. Zhao, and C. Zhang, Thin Solid Films 483, 382 (2005). doi 10.1016/j.tsf.2005.01.015

    Article  CAS  Google Scholar 

  9. D. T. W. Lin, Y. P. Yuan, and Y. C. Hu, Int. Proc. Chem. Biol. Environ. Eng. 82, 109 (2015). doi 10.7763/IPCBEE. 2015.V82.21

    CAS  Google Scholar 

  10. A. S. G. Khalil, S. Hartner, M. Ali, et al., J. Nanosci. Nanotechnol. 11, 10839 (2011). doi 10.1039/c7nr00250e

    Article  CAS  Google Scholar 

  11. H. Zeng, Y. Dong, Y. Zou, et al., Nanoscale (2017) (in press). doi 10.1039/c7nr00250e

    Google Scholar 

  12. J. Jaramillo, B. W. Boudouris, C. A. Barrero, and F. Jaramillo, ACS Appl. Mater. Interfaces 7, 25061 (2015). doi 10.1021/acsami.5b09686

    Article  CAS  Google Scholar 

  13. M. Raula, M. Biswas, and T. K. Mandal, RSC Adv. 4, 5055 (2014). doi

    Article  CAS  Google Scholar 

  14. L. Xu, Y. L. Hu, C. Pelligra, et al., Chem. Mater. 21, 2875 (2009). doi 10.1021/cm900608d

    Article  CAS  Google Scholar 

  15. T. T. Duong, Q. N. Do, A. T. Pham, and D. C. Nguyen, J. Alloys Compd. 686, 854 (2016). doi 10.1016/j.jallcom. 2016.06.204

    Article  CAS  Google Scholar 

  16. S. Brahma and S. A. Shivashankar, Mater. Lett. 164, 235 (2016). doi 10.1016/j.matlet.2015.10.147

    Article  CAS  Google Scholar 

  17. S. Brahma, L. M. Kukreja, S. B. Krupanidhi, and S. A. Shivashankar, Phys. Status Solidi A 210, 2600 (2013). doi 10.1002/pssa.201330232

    Article  CAS  Google Scholar 

  18. X. Liu and M. T. Swihart, Nanoscale 5, 8029 (2013). doi 10.1039/c3nr02571c

    Article  CAS  Google Scholar 

  19. E. Rauwel, A. Galeckas, P. Rauwel, et al., J. Phys. Chem. C 115, 25227 (2011). doi 10.1021/jp208487v

    Article  CAS  Google Scholar 

  20. N. P. Simonenko, E. P. Simonenko, A. S. Mokrushin, et al., Russ. J. Inorg. Chem. 62, 695 (2017). doi 10.1134/S0036023617060213

    Article  CAS  Google Scholar 

  21. N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 61, 805 (2016). doi 10.1134/S0036023616070184

    Article  CAS  Google Scholar 

  22. N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 61, 667 (2016). doi 10.1134/S003602361606019X

    Article  CAS  Google Scholar 

  23. E. P. Simonenko, N. P. Simonenko, Yu. S. Ezhov, et al., Phys. Atom. Nucl. 78, 1357 (2015). doi 10.1134/S106377881512011X

    Article  CAS  Google Scholar 

  24. N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 60, 795 (2015). doi 10.1134/S0036023615070153

    Article  CAS  Google Scholar 

  25. N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 57, 1521 (2012). doi 10.1134/S0036023612120194

    Article  CAS  Google Scholar 

  26. V. G. Sevast’yanov, E. P. Simonenko, N. P. Simonenko, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 57, 307 (2012). doi 10.1134/S0036023612030278

    Article  Google Scholar 

  27. T. Kemmitt and M. Daglish, Inorg. Chem. 37, 2063 (1998). doi 10.1021/ic971131c

    Article  CAS  Google Scholar 

  28. S. Wang, Z. Pang, K. D. L. Smith, et al., Inorg. Chem. 34, 908 (1995). doi 10.1021/ic00108a023

    Article  CAS  Google Scholar 

  29. H.-W. Lerner and M. Bolte (private communication to the CSD, REFCODE ACACZM02, 2005).

  30. G. Ambrožic, S. D. Škapin, M. Žigon, and Z. C. Orel, J. Colloid Interface Sci. 346, 317 (2010). doi 10.1016/j.jcis.2010.03.001

    Article  Google Scholar 

  31. G. Ambrožic, I. Djerdj, S. D. Škapin, et al., CrystEng-Comm 12, 1862 (2010). doi 10.1039/b924412n

    Article  Google Scholar 

  32. G. Ambrožic, Z. C. Orel, M. Žigon, et al., Materiali in Tehnologije 45, 173 (2011).

    Google Scholar 

  33. G. Ambrožic, S. D. Škapin, M. Žigon, et al., Mater. Res. Bull. 46, 2497 (2011). doi 10.1016/j.materresbull.2011.08.018

    Article  Google Scholar 

  34. M. Baghbanzadeh, S. D. Škapin, Z. C. Orel, and C. O. Kappe, Chem. Eur. J. 18, 5724 (2012). doi 10.1002/chem.201103548

    Article  CAS  Google Scholar 

  35. A. Saric, G. Stefanic, G. Drazic, and M. Gotic, J. Alloys Compd. 652, 91 (2015). doi 10.1016/j.jallcom.2015.08.200

    Article  CAS  Google Scholar 

  36. N. Pinna, G. Garnweitner, M. Antonietti, and M. Niederberger, J. Am. Chem. Soc. 127, 5608 (2005). doi 10.1021/ja042323r

    Article  CAS  Google Scholar 

  37. H. Damm, A. Kelchtermans, A. Bertha, et al., RSC Adv. 3, 23745 (2013). doi 10.1039/c3ra43328e

    Article  CAS  Google Scholar 

  38. M. Oftadeh, M. Salavati-Niasari, and F. Davar, Int. J. Nanopart. 2, 307 (2009). doi 10.1504/IJNP.2009.028764

    Article  CAS  Google Scholar 

  39. M. Oftadeh, M. Salavati-Niasari, and F. Davar, Int. J. Nanosci. 8, 277 (2009). doi 10.1142/S0219581X0900616X

    Article  CAS  Google Scholar 

  40. J. G. Liu, Y. Y. Bei, H. P. Wu, et al., Mater. Lett. 61, 2837 (2007). doi 10.1016/j.matlet.2007.03.028

    Article  CAS  Google Scholar 

  41. C. Chory, R. B. Neder, V. I. Korsunskiy, et al., Phys. Status Solidi C 4, 3260 (2007). doi 10.1002/pssc.200775424

    Article  CAS  Google Scholar 

  42. C. M. Wu, J. Baltrusaitis, E. G. Gillan, and V. H. Grassian, J. Phys. Chem. C 115, 10164 (2011). doi 10.1021/jp201986j

    Article  CAS  Google Scholar 

  43. A. Saric, S. Music, and M. Ivanda, J. Mol. Struct. 993, 219 (2011). doi 10.1016/j.molstruc.2010.10.018

    Article  CAS  Google Scholar 

  44. A. Famengo, S. Anantharaman, G. Ischia, et al., Eur. J. Inorg. Chem, No. 33, 5017 (2009). doi 10.1002/ejic.200900506

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.P. Simonenko, N.P. Simonenko, I.A. Nagornov, A.S. Mokrushin, F.Yu. Gorobtsov, I.S. Vlasov, I.A. Volkov, T. Maeder, V.G. Sevast’yanov, N.T. Kuznetsov, 2017, published in Zhurnal Neorganicheskoi Khimii, 2017, Vol. 62, No. 11, pp. 1421–1432.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, E.P., Simonenko, N.P., Nagornov, I.A. et al. Synthesis of nanocrystalline ZnO by the thermal decomposition of [Zn(H2O)(O2C5H7)2] in isoamyl alcohol. Russ. J. Inorg. Chem. 62, 1415–1425 (2017). https://doi.org/10.1134/S0036023617110195

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023617110195

Navigation