Skip to main content

Advertisement

Log in

NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithiation and delithiation of nanosilicon anodes of 100–200 nm diameter have been probed by ex situ solid-state high-resolution 7Li nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) methods. Samples were charged within pouch cells up to capacities of 1,500 mAh/g at 0.1 C, and subsequently discharged at the same rate. The NMR spectra reveal important quantitative information on the local lithium environments during the various stages of the charging/discharging process. The TEM experiments show that the electrochemical lithiation of nanosilicon particles results in core-shell materials, consisting of LixSi shells surrounding a core of residual silicon. The NMR spectra yield approximate Li/Si ratios of the lithium silicides present in the shells, based on the distinct local environments of the various types of 7Li nuclei present. The combination of NMR with TEM gives important quantitative conclusions about the nature of the electrochemical lithiation process: Following the initial formation of the solid electrolyte interphase layer, which accounts for an irreversible capacity of 240 mAh/g, lithium silicide environments with intermediate Li concentrations (Li12Si7, Li7Si3, and Li13Si4) are formed at the 500 to 1,000 mAh/g range during the charging process. At a certain penetration depth, further lithiation does not progress any further toward the interior of the silicon particles but rather leads to the formation of increasing amounts of the lithium-richest silicide, Li15Si4-type environments. Delithiation does not result in the reappearance of the intermediate-stage phases but rather only changes the amount of Li15Si4 present, indicating no microscopic reversibility. Based on these results, a detailed quantitative model of nanophase composition versus penetration depth has been developed. The results indicate the power and potential of solid-state NMR spectroscopy for elucidating the charging/discharging mechanism of nano-Si anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nesper R (1990) Prog Solid State Chem 20:1

    Article  CAS  Google Scholar 

  2. Nesper R, von Schnering HG (1987) J Solid State Chem 70:48

    Article  CAS  Google Scholar 

  3. Klemm W, Struck M (1955) Z Anorg Allg Chem 278:117

    Article  CAS  Google Scholar 

  4. Boukamp BA, Lesh GC, Huggins RA (1981) J Electrochem Soc 128:725

    Article  CAS  Google Scholar 

  5. Nesper R, von Schnering HG, Curda J (1986) Chem Ber 119:3576

    Article  CAS  Google Scholar 

  6. Frank U, Müller W, Schäfer H (1975) Z Naturforsch B 30:10

    Google Scholar 

  7. von Schnering HG, Nesper R, Tebbe KF, Curda J (1980) Z Metallkunde 71:357

    Google Scholar 

  8. von Schnering HG, Nesper R, Curda J, Tebbe KF (1980) Angew Chem 92:1070

    Article  Google Scholar 

  9. Limthongkul P, Jang Y-I, Dudney NJ, Chiang Y-M (2003) J Power Sources 119–121:604

    Article  Google Scholar 

  10. Obrovac MN, Christensen L (2004) Electrochem Solid-State Lett 7:A93

    Article  CAS  Google Scholar 

  11. Hatchard TD, Dahn JR (2004) J Electrochem Soc 151:A838

    Article  CAS  Google Scholar 

  12. Hayes S, van Wullen L, Eckert H, Even WR, Crocker RW, Zhang Z (1997) Chem Mater 9:901

    Article  CAS  Google Scholar 

  13. Dedryvère R, Olivier-Fourcade J, Jumas J (2000) Ionics 6:397

    Article  Google Scholar 

  14. Dupre N, Martin J-F, Guyomard D, Yamada A, Kanno R (2008) J Mater Chem 18:4266

    Article  CAS  Google Scholar 

  15. Dupré N, Martin J-F, Guyomard D, Yamada A, Kanno R (2009) J Power Sources 189:557

    Article  Google Scholar 

  16. Key B, Bhattacharyya R, Morcrette M, Seznéc V, Tarascon J-M, Grey CP (2009) J Am Chem Soc 131:9239

    Article  CAS  Google Scholar 

  17. Key B, Bhattacharyya R, Grey CP, Abstract of Papers, 237th ACS National Meeting (March 2009) FUEL-048, CODEN 69LNK5, AN 2009:304252

  18. Stearns LA, Gryko J, Diefenbacher J, Ramachandran GK, McMillan PF (2003) J Solid State Chem 173:251

    Article  CAS  Google Scholar 

  19. Dupke S, Langer T, Pöttgen R, Eckert H, manuscript in preparation

  20. Xu YH, Yin GP, Zuo PJ (2008) Electrochim Acta 54:341

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding of this work by DFG project Ec168/9-1 within PAK 177 “Lithium Hochleistungsbatterien” is most gratefully acknowledged. We thank Professor Guido Schmitz for assistance with the TEM experiments and Drs. M. Miessen and P. Pilgram (Evonik, Degussa) for providing the nanosilicon materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hellmut Eckert.

Additional information

Dedicated to Professor Robert Schöllhorn on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trill, JH., Tao, C., Winter, M. et al. NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries. J Solid State Electrochem 15, 349–356 (2011). https://doi.org/10.1007/s10008-010-1260-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1260-0

Keywords

Navigation