Skip to main content
Log in

Electrochemical behavior of silver-impregnated Al-pillared smectite in alkaline solution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In order to enhance silver effectiveness for oxygen reduction reaction, pillared clay was used as a support for silver nanodispersion. Silver particles incorporation into pillared clay pores was attempted by impregnation/thermal degradation technique. X-ray diffraction as well as adsorption-desorption isotherms confirmed that pillaring procedure was successful. Scanning electron microscopy evidenced that a part of silver appeared outside the pillared clay cavities. Ag-pillared clay composite homogenized with 10 wt.% of nanodispersed carbon black (Vulcan), was applied on a flat glassy carbon surface and used as an electrode material. Oxygen reduction reaction was investigated in an O2-saturated aqueous 0.1 M NaOH solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hacker V, Wallnöfer E, Baumgartner W, Schaffer T, Besenhard JO, Schröttner H, Schmied M (2005) Electrochem Commun 7:377

    Article  CAS  Google Scholar 

  2. McIntyre J, Peck W (1984) Electrochemistry at single-crystal metal electrodes. Electrocatalytic effects on surface atomic structure, defects and adatoms on oxygen reduction. In: McIntyre J, Weaver M, Yeager E (eds) The chemistry and physics of electrocatalysis. The Electrochemical Society, Pennington, pp 102–130

    Google Scholar 

  3. Šepa D, Vojnovíć M, Damjanović A (1970) Electrochim Acta 15:1355

    Article  Google Scholar 

  4. Arul Raj I, Vasu K (1993) J Appl Electrochem 23:728

    Article  Google Scholar 

  5. Lee H, Shim J-P, Shim M-J, Kim S-W, Lee J-S (1996) Mater Chem Phys 45:238

    Article  CAS  Google Scholar 

  6. Yang YF, Zhon YH (1995) J Electroanal Chem 397:271

    Article  Google Scholar 

  7. Cassagneau T, Fendler J (1999) J Phys Chem B 103:1789

    Article  CAS  Google Scholar 

  8. Bosković I, Mentus S, Pješčić M (2006) Electrochim Acta 51:2793

    Article  Google Scholar 

  9. Kloprogge J (1998) J Porous Mater 5:5

    Article  CAS  Google Scholar 

  10. Maes A, Cremers A (1977) J Chem Soc Perkin Trans 1 73:1807

    Google Scholar 

  11. Ferris A, Jepson W (1975) J Colloid Interface Sci 51:245

    Article  CAS  Google Scholar 

  12. Coleman N, Bishop A, Booth S, Nicholson J (2009) J Eur Ceram Soc 29:1109

    Article  CAS  Google Scholar 

  13. Ramaswamy V, Malwadkar S, Chilukuri S (2008) Appl Catal B 84:21

    Article  CAS  Google Scholar 

  14. Belver C, Mata G, Trujillano R, Vicente M (2008) Catal Lett 123:32

    Article  CAS  Google Scholar 

  15. Catrinescu C, Teodosiu C, Macoveanu M, Miehe-Brendlé J, Le Dred R (2003) Water Res 37:1154

    Article  CAS  Google Scholar 

  16. Okumura M, Tanaka K, Ueda A, Haruta M (1997) Solid State Ionics 95:143

    Article  CAS  Google Scholar 

  17. Mentus S, Mojović Z, Cvjetićanin N, Tešić Z (2003) Fuell Cells 3:15

    Article  CAS  Google Scholar 

  18. Mojovic Z, Mentus S, Cvjeticanin N, Tesic Z (2004) Mat Sci Forum 453–454:257

    Article  Google Scholar 

  19. International Center for Diffraction Data – Joint Committee on Powder Diffraction Standards Powder diffraction data (1990) Swarthmore. PA, USA

    Google Scholar 

  20. Sánches A, Montes M (1998) Microporous Mesoporous Mater 21:117

    Article  Google Scholar 

  21. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by Powders and Porous Solids. Academic Press, London

    Google Scholar 

  22. Gregg S, Sing K (1967) Adsorption. Academic Press, New York, Surface Area and Porosity

    Google Scholar 

  23. Dubinin M (1975) Progress in surface and membrane science. Academic Press, New York

    Google Scholar 

  24. Horwath G, Kawazoe K (1983) J Chem Eng Jpn 16:470

    Article  Google Scholar 

  25. Brotas de Carvalho M, Pires J, Carvalho A (1996) Microporous Mater 6:65

  26. Barrera-Vargas M, Valencia-Rios J, Vicente M, Korili S, Gil A (2005) J Phys Chem B 109:23461

    Article  CAS  Google Scholar 

  27. Nagle L, Ahern A, Burke L (2002) J Solid State Electrochem 6:320

    Article  CAS  Google Scholar 

  28. Popkirov G, Burmeister M, Schindler R (1995) J Electroanal Chem 380:249

    Article  Google Scholar 

  29. Blizanac B, Ross P, Markovic N (2006) J Phys Chem B 110:4735

    Article  CAS  Google Scholar 

  30. Yang YF, Zhou YH (1996) J Electroanal Chem 415:143

    Article  CAS  Google Scholar 

  31. Chatenet M, Genies-Bultel L, Aurousseau M, Durand R, Andolfatto F (2002) J Appl Electrochem 32:1131

    Article  CAS  Google Scholar 

  32. Lima FHB, de Castro JFR, Ticianelli EA (2006) J Power Sources 161:806

    Article  CAS  Google Scholar 

  33. Ni K, Chen l, Lu G (2008) Electrochem Commun 10:1027

  34. Demarconnay L, Coutanceau C, Léger JM (2004) Electrochim Acta 49:4513

    Article  CAS  Google Scholar 

  35. Kostowskyj MA, Gilliam RJ, Kirk DW, Thorpe SJ (2008) J Hydrogen Ene 33:5773

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministry of Science of Republic Serbia, contracts No. 166001B, No. 142019 and 142047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zorica Mojović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mojović, Z., Milutinović-Nikolić, A., Banković, P. et al. Electrochemical behavior of silver-impregnated Al-pillared smectite in alkaline solution. J Solid State Electrochem 14, 1621–1627 (2010). https://doi.org/10.1007/s10008-010-1006-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1006-z

Keywords

Navigation