Skip to main content
Log in

Theoretical study of intramolecular hydrogen bond in selected symmetric “proton sponges” on the basis of DFT and CPMD methods

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

“Proton sponges,” derivatives of prototypic 1,8-bis(dimethylamino)naphthalene (DMAN), exhibit remarkable basicity, which made them interesting for various experimental and theoretical studies. The details of bridged proton dynamics in protonated DMAN and its derivative denoted as TMGN (1,8-bis(tetramethylguanidino)naphthalene) were investigated on the basis of density functional theory (DFT) and Car-Parrinello molecular dynamics (CPMD) methods. Special attention was paid to the effects of symmetry of the molecular skeleton and the type of substituent on the bridged proton neighborhood statistics and dynamics. The metric parameter analyses of hydrogen bridge provided us with a conclusion that proton migration events in TMGNH+ are less numerous than in DMANH+, which can be rationalized by noticing the slower dynamics of large substituents of TMGN with respect to the smaller –N(Me)2 groups of DMAN. The atomic velocity power spectra served as computational models of the vibrational signatures associated with the presence of the intramolecular hydrogen bond. A broad feature was registered for hydrogen bonds present in both compounds. The computations were verified by experimental data available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alder RW, Bowman PS, Steele RS, Winterman DR (1968) The remarkable basicity of 1,8-bis(dimethylamino)naphthalene. Chem Commun 452:723–724

    Google Scholar 

  2. Raab V, Gauchenova E, Merkoulov A, Harms K, Sundermeyer J, Kovačević B, Maksić ZB (2005) 1,8-bis(hexamethyltriaminophosphazenyl)naphthalene, HMPN: a superbasic bisphosphazene “proton sponge”. J Am Chem Soc 127:15738–15743

    Article  CAS  Google Scholar 

  3. Alder RW (1989) Strain effects on amine basicities. Chem Rev 89:1215–1223

    Article  CAS  Google Scholar 

  4. Saupe T, Krieger C, Staab HA (1986) 4,5-bis(dimethylamino)phenanthrene and 4,5-bis(dimethylamino)-9,10-dihydrophenanthrene: syntheses and “proton sponge” properties. Angew Chem Int Ed Eng 25:451–453. https://doi.org/10.1002/anie.198604511

    Article  Google Scholar 

  5. Kögel JF, Xie X, Baal E, Gesevičius D, Oelkers B, Kovačević B, Sundermeyer J (2014) Superbasic alkyl-substituted bisphosphazene proton sponges: synthesis, structural features, thermodynamic and kinetic basicity, nucleophilicity and coordination chemistry. Chem Eur J 20:7670–7685. https://doi.org/10.1002/chem.201402226

    Article  CAS  PubMed  Google Scholar 

  6. Alder RW, Orpen AG, Sessions RB (1983) The structure of I ,6-diazabicyclo[4.4.4]tetradecane and of its inside protonated ion. J Chem Soc Chem Commun 999–1000

  7. Ozeryanskii VA, Pozharskii AF, Antonov AS, Filarowski A (2014) Out-basicity of 1,8-bis(dimethylamino)-naphthalene: the experimental and theoretical challenge. Org Biomol Chem 12:2360–2369. https://doi.org/10.1039/c3ob41986j

    Article  CAS  PubMed  Google Scholar 

  8. Schwesinger R, Mißfeldt M, Peters K, von Schnering HG (1987) Novel, very strongly basic, pentacyclic “proton sponges” with vinamidine structure. Angew Chem Int Ed Eng 26:1165–1167. https://doi.org/10.1002/anie.198711651

    Article  Google Scholar 

  9. Katz HE (1985) Hydride sponge: 1,8-naphtalenediylbis(dimethylborane). J Am Chem 107:1420–1421. https://doi.org/10.1021/ja00291a057

    Article  CAS  Google Scholar 

  10. Staab HA, Saupe T (1988) “Proton sponges” and the geometry of hydrogen bonds: aromatic nitrogen bases with exceptional basicities. Angew Chem Int Ed Eng 27:865–879. https://doi.org/10.1002/anie.198808653

    Article  Google Scholar 

  11. Llamas-Saiz AL, Foces-Foces C, Elguero J (1994) Proton sponges. J Mol Struct 328:297–323. https://doi.org/10.1016/0022-2860(94)08367-3

    Article  CAS  Google Scholar 

  12. Raczyńska ED, Gal J-F, Maria P-C (2016) Enhanced basicity of push–pull nitrogen bases in the gas phase. Chem Rev 116:13454–13511. https://doi.org/10.1021/acs.chemrev.6b00224

    Article  CAS  PubMed  Google Scholar 

  13. Mallinson PR, Woźniak K, Wilson CC, McCormack KL, Yufit DS (1999) Charge density distribution in the “proton sponge” compound1,8-bis(dimethylamino)naphthalene. J Am Chem Soc 121:4640–4646. https://doi.org/10.1021/ja983393z

    Article  CAS  Google Scholar 

  14. Bieńko AJ, Latajka Z, Sawka-Dobrowolska W, Sobczyk L, Ozeryanskii VA, Pozharskii AF, Grech E, Nowicka-Scheibe J (2003) Low barrier hydrogen bond in protonated proton sponge. X-ray diffraction, infrared, and theoretical ab initio and density functional theory studies. J Chem Phys 119:4313–4319. https://doi.org/10.1063/1.1594171

    Article  CAS  Google Scholar 

  15. Sobczyk L, Chudoba D, Tolstoy PM, Filarowski A (2016) Some brief notes on theoretical and experimental investigations of intramolecular hydrogen bonding. Molecules 21:1657. https://doi.org/10.3390/molecules21121657

    Article  CAS  PubMed Central  Google Scholar 

  16. Korzhenevska NG, Rybachenko VI, Schroeder G (2002) The basicity of 1,8-bis(dimethylamino)naphthalene and the hybrid state of the nitrogen atoms of its dimethylamino groups. Tetrahedron Lett 43:6043–6045

    Article  CAS  Google Scholar 

  17. Perrin CL (2010) Are short, low-barrier hydrogen bonds unusually strong? Acc Chem Res 43:1550–1557

    Article  CAS  Google Scholar 

  18. Mazaleyrat J-P, Wright K (2008) Binaphthyl substituted 1,8-bis(dimethylamino)naphthalenes, the first chiral, atropisomeric, proton sponges. Tetrahedron Lett 49:4537–4541. https://doi.org/10.1016/j.tetlet.2008.05.042

    Article  CAS  Google Scholar 

  19. Mallinson PR, Woźniak K, Smith GT, MCCormack KL (1997) A charge density analysis of cationic and anionic hydrogen bonds in a “proton sponge” complex. J Am Chem Soc 119:11502–11509

    Article  CAS  Google Scholar 

  20. Eitner K, Schroeder G, Rybachenko VI, Brzezinski B (2000) NHN+ intramolecular hydrogen bonds: heat of formation and parameters of some proton sponges. J Mol Struct 525:247–251

    Article  CAS  Google Scholar 

  21. Ozeryanskii VA, Shevchuk DA, Pozharskii AF, Kazheva ON, Chekhlov AN, Dyachenko OA (2008) Protonation of naphthalene proton sponges containing higher N-alkyl groups. Structural Consequences on Proton Accepting Properties and Intramolecular Hydrogen Bonding. J Mol Struct 892:63–67

    Article  CAS  Google Scholar 

  22. Sobczyk L (2010) The specificity of the [NHN]+ hydrogen bonds in protonated naphthalene proton sponges. J Mol Struct 972:59–63

    Article  CAS  Google Scholar 

  23. Pozharskii AF, Ozeryanskii VA (2012) Proton sponges and hydrogen transfer phenomena. Mendeleev Commun 22:117–124

    Article  CAS  Google Scholar 

  24. Ozeryanskii VA, Pozharskii AF (2013) Simple and hydrolytically stable proton sponge based organic cation displaying hydrogen bonding and a number of related phenomena. Thtrahedron 69:2107–2112

    Article  CAS  Google Scholar 

  25. Bernatowicz P, Kowalewski J, Sandström D (2005) NMR relaxation study of the protonated form of 1,8-bis(dimethylamino)naphthalene in isotropic solution: anisotropic motion outside of extreme narrowing and ultrafast proton transfer. J Phys Chem A 109:57–63

    Article  CAS  Google Scholar 

  26. Degtyarev AV, Ryabtsova OV, Pozharskii AF, Ozeryanskii VA, Starikova ZA, Sobczyk L, Filarowski A (2008) 2,7-Disubstituted proton sponges as borderline systems for investigating barrier-free intramolecular hydrogen bonds. Protonated 2,7-bis-(trimethylsilyl)- and 2,7-di(hydroxymethyl)-1,8-bis(dimethylamino)-naphthalenes. Tetrahedron 64:6209–6214

    Article  CAS  Google Scholar 

  27. Gilli G, Gilli P (2000) Towards an unified hydrogen-bond theory. J Mol Struct 552:1–15

    Article  CAS  Google Scholar 

  28. Boer SA, Wang P-X, MacLachlan MJ, White NG (2019) Open pentiptycene networks assembled through charge-assisted hydrogen bonds. Cryst Growth Des 19:4829–4835

    Article  CAS  Google Scholar 

  29. Meot-Ner (Mautner) M (2005) The ionic hydrogen bond. Chem Rev 105:213–284

    Article  Google Scholar 

  30. Raab V, Kipke J, Gschwind RM, Sundermeyer J (2002) 1,8-Bis(tetramethylguanidino)naphthalene (TMGN): a new, superbasic and kinetically active “proton sponge”. Chem Eur J 8:1682–1693

    Article  CAS  Google Scholar 

  31. Kovačević B, Maksić ZB (2002) The proton affinity of the superbase 1,8-bis(tetramethylguanidino)naphthalene (TMGN) and some related compounds: a theoretical study. Chem Eur J 8:1694–1702

    Article  Google Scholar 

  32. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  33. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  34. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    Article  CAS  Google Scholar 

  35. Jezierska A, Panek JJ (2015) “Zwitterionic proton sponge” hydrogen bonding investigations on the basis of Car-Parrinello molecular dynamics. J Chem Inf Model 55:1148–1157

    Article  CAS  Google Scholar 

  36. Jezierska A, Panek JJ, Koll A (2008) Spectroscopic properties of a strongly anharmonic Mannich base N-oxide. Chem Phys Chem 9:839–846

    Article  CAS  Google Scholar 

  37. Jezierska A, Panek JJ (2008) First-principle molecular dynamics study of selected Schiff and Mannich bases: application of two-dimensional potential of mean force to systems with strong intramolecular hydrogen bonds. J Chem Theory Comput 4:375–384

    Article  CAS  Google Scholar 

  38. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728. https://doi.org/10.1063/1.1674902

    Article  CAS  Google Scholar 

  39. Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  41. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  42. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401. https://doi.org/10.1103/PhysRevLett.91.146401

    Article  CAS  PubMed  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc., Wallingford 2010

  44. Hockney RW (1970) The potential calculation and some applications. Methods Comput Phys 9:136–211

    Google Scholar 

  45. Trouiller N, Martins JS (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:8861–8869

    Article  Google Scholar 

  46. Jezierska-Mazzarello A, Panek JJ, Vuilleumier R, Koll A, Ciccotti G (2011) Direct observation of the substitution effects on the hydrogen bridge dynamics in selected Schiff bases – a comparative molecular dynamics study. J Chem Phys 134:034308

    Article  Google Scholar 

  47. Jezierska A, Panek JJ, Koll A, Mavri J (2007) Car-Parrinello simulation of an O-H stretching envelope and potential of mean force of an intramolecular hydrogen bonded system: application to a Mannich base in solid state and in vacuum. J Chem Phys 126:205101

    Article  Google Scholar 

  48. Martyniak A, Panek J, Jezierska-Mazzarello A, Filarowski A (2012) Triple hydrogen bonding in a circular arrangement: ab initio, DFT and first-principles MD studies of tris-hydroxyaryl enamines. J Comput Aid Mol Des 26:1045–1053

    Article  CAS  Google Scholar 

  49. Panek JJ, Jezierska-Mazzarello A, Lipkowski P, Martyniak A, Filarowski A (2014) Comparison of resonance assisted and charge assisted effects in strengthening of hydrogen bonds in dipyrrins. J Chem Inf Model 54:86–95

    Article  CAS  Google Scholar 

  50. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  Google Scholar 

  51. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  52. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  CAS  Google Scholar 

  53. CPMD, Copyright IBM Corp., Zurich, Switzerland, 1990–2004; Copyright MPI fuer Festkoerperforschung Stuttgart, Stuttgart. Germany, 1997–2001

  54. Humphrey W, Dalke A, Schulten K (1996) VMD - visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  55. Gnuplot, Copyright (C) 1986–1993, 1998, 2004. Williams T, Kelley C. Copyright (C) 2004-2007. Broeker HB, Campbell J, Cunningham R, Denholm D, Elber G, Fearick R, Grammes C, Hart L et al.

  56. Sobczyk L, Grabowski SJ, Krygowski TM (2005) Interrelation between H-bond and Pi-electron delocalization. Chem Rev 105:3513–3560

    Article  CAS  Google Scholar 

  57. Grech E, Malarski Z, Sobczyk L (1985) IR spectroscopic properties of hydrogen bonding in 1:1 salts of 1,8-bis(N,N-dimethylamino)naphthalene. J Mol Struct 129:35–43

    Article  CAS  Google Scholar 

  58. Grech E, Malarski Z, Sobczyk L (1986) Isotopic effects in NH…N hydrogen bonds. Chem Phys Lett 128:259–263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the Wrocław Centre for Networking and Supercomputing (WCSS), the Academic Computer Center (TASK) in Gdańsk for generous computing time grants and the use of computational facilities.

Funding

The authors would like to thank the National Science Centre (Poland) which supported this work under the grant no. UMO-2015/17/B/ST4/03568.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Jezierska.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection Zdzisław Latajka 70th Birthday Festschrift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jezierska, A., Panek, J.J. Theoretical study of intramolecular hydrogen bond in selected symmetric “proton sponges” on the basis of DFT and CPMD methods. J Mol Model 26, 37 (2020). https://doi.org/10.1007/s00894-020-4296-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4296-9

Keywords

Navigation