Skip to main content
Log in

Application of molecular dynamics simulations to design a dual-purpose oligopeptide linker sequence for fusion proteins

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Proteins are often monitored by combining a fluorescent polypeptide tag with the target protein. However, due to the high molecular weight and immunogenicity of such tags, they are not suitable choices for combining with fusion proteins such as immunotoxins. In this study, we designed a polypeptide sequence with a dual role (it acts as both a linker and a fluorescent probe) to use with fusion proteins. Two common fluorescent tag sequences based on tetracysteine were compared to a commonly used rigid linker as well as our proposed dual-purpose sequence. Computational investigations showed that the dual-purpose sequence was structurally stable and may be a good choice to use as both a linker and a fluorescence marker between two moieties in a fusion protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2a–d
Fig. 3a–b
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Crivat G, Taraska JW (2012) Imaging proteins inside cells with fluorescent tags. Trends Biotechnol 30(1):8–16

    Article  CAS  Google Scholar 

  2. Gautier A et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15(2):128–136

    Article  CAS  Google Scholar 

  3. Juillerat A et al (2003) Directed evolution of O6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo. Chem Biol 10(4):313–317

    Article  CAS  Google Scholar 

  4. Los GV et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3(6):373–382

    Article  CAS  Google Scholar 

  5. Gaietta G et al (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296(5567):503–507

    Article  CAS  Google Scholar 

  6. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281(5374):269–272

    Article  CAS  Google Scholar 

  7. Adams SR et al (2002) New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124(21):6063–6076

    Article  CAS  Google Scholar 

  8. Martin BR et al (2005) Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol 23(10):1308–1314

    Article  CAS  Google Scholar 

  9. Jensen EC (2012) Use of fluorescent probes: their effect on cell biology and limitations. Anat Rec 295(12):2031–2036

    Article  CAS  Google Scholar 

  10. Amet N, Lee H-F, Shen W-C (2009) Insertion of the designed helical linker led to increased expression of tf-based fusion proteins. Pharm Res 26(3):523

    Article  CAS  Google Scholar 

  11. Bai Y, Ann DK, Shen W-C (2005) Recombinant granulocyte colony-stimulating factor-transferrin fusion protein as an oral myelopoietic agent. Proc Natl Acad Sci U S A 102(20):7292–7296

    Article  CAS  Google Scholar 

  12. Bai Y, Shen W-C (2006) Improving the oral efficacy of recombinant granulocyte colony-stimulating factor and transferrin fusion protein by spacer optimization. Pharm Res 23(9):2116–2121

    Article  CAS  Google Scholar 

  13. Zhao HL et al (2008) Increasing the homogeneity, stability and activity of human serum albumin and interferon-α2b fusion protein by linker engineering. Protein Expr Purif 61(1):73–77

    Article  CAS  Google Scholar 

  14. Amet N, Wang W, Shen W-C (2010) Human growth hormone–transferrin fusion protein for oral delivery in hypophysectomized rats. J Control Release 141(2):177–182

    Article  CAS  Google Scholar 

  15. Lu P, Feng M-G (2008) Bifunctional enhancement of a β-glucanase-xylanase fusion enzyme by optimization of peptide linkers. Appl Microbiol Biotechnol 79(4):579–587

    Article  CAS  Google Scholar 

  16. Takamatsu N et al (1990) Production of enkephalin in tobacco protoplasts using tobacco mosaic virus RNA vector. FEBS Lett 269(1):73–76

    Article  CAS  Google Scholar 

  17. Hoffmann C et al (2005) A FlAsH-based FRET approach to determine G protein–coupled receptor activation in living cells. Nat Methods 2(3):171

    Article  CAS  Google Scholar 

  18. Kinch MS, et al (2009) Toxin conjugated eph receptor antibodies

  19. Arai R et al (2001) Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng 14(8):529–532

    Article  CAS  Google Scholar 

  20. Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  CAS  Google Scholar 

  21. Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15(11):2507–2524

    Article  CAS  Google Scholar 

  22. Hwang WC et al (2006) Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R. J Biol Chem 281(45):34610–34616

    Article  CAS  Google Scholar 

  23. Sievers F et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 7(1):539

    Article  Google Scholar 

  24. Yang J et al (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12(1):7–8

    Article  CAS  Google Scholar 

  25. Wedekind JE et al (2001) Refined crystallographic structure of Pseudomonas aeruginosa exotoxin a and its implications for the molecular mechanism of toxicity. J Mol Biol 314(4):823–837

    Article  CAS  Google Scholar 

  26. Berman HM et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  27. Xu D et al (2014) AIDA: ab initio domain assembly server. Nucleic Acids Res 42(Web Server issue):W308–W313

    Article  CAS  Google Scholar 

  28. Laskowski RA (2001) PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 29(1):221–222

    Article  CAS  Google Scholar 

  29. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:407–410

    Article  Google Scholar 

  30. Abraham MJ et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2:19–25

    Article  Google Scholar 

  31. Daura X et al (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38(1–2):236–240

    Article  CAS  Google Scholar 

  32. Peng E, Todorova N, Yarovsky I (2017) Effects of forcefield and sampling method in all-atom simulations of inherently disordered proteins: application to conformational preferences of human amylin. PLoS One 12(10):e0186219

    Article  Google Scholar 

  33. Smith LJ, Daura X, van Gunsteren WF (2002) Assessing equilibration and convergence in biomolecular simulations. Protein Struct Funct Bioinf 48(3):487–496

    Article  CAS  Google Scholar 

  34. Pettersen EF et al (2004) UCSF chimera–̄a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  Google Scholar 

  35. Heo L, Park H, Seok C (2013) GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res 41(W1):W384–W388

    Article  Google Scholar 

  36. Xu D et al (2015) AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain–domain interaction prediction. Bioinformatics 31(13):2098–2105

    Article  CAS  Google Scholar 

  37. Caflisch A, Paci E (2005) Molecular dynamics simulations to study protein folding and unfolding. Protein folding handbook. Wiley—VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  38. Mohammadi M et al (2016) Insilico analysis of three different tag polypeptides with dual roles in scFv antibodies. J Theor Biol 402:100–106

    Article  CAS  Google Scholar 

  39. Lobanov MY, Bogatyreva NS, Galzitskaya OV (2008) Radius of gyration as an indicator of protein structure compactness. Mol Biol 42(4):623–628

    Article  CAS  Google Scholar 

  40. Argos P (1990) An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol 211(4):943–958

    Article  CAS  Google Scholar 

  41. George RA, Heringa J (2002) An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng 15(11):871–879

    Article  CAS  Google Scholar 

  42. Williamson MP (1994) The structure and function of proline-rich regions in proteins. Biochem J 297(Pt 2):249–260

    Article  CAS  Google Scholar 

  43. Chen X, Zaro JL, Shen WC (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65(10):1357–1369

    Article  CAS  Google Scholar 

  44. Alam A, Takaguchi Y, Tsuboi S (2005) Simple, extremely fast, and high-yielding oxidation of thiols to disulfides. Synth Commun 35(10):1329–1333

    Article  CAS  Google Scholar 

  45. Siddiqui KS et al (2005) Role of disulfide bridges in the activity and stability of a cold-active alpha-amylase. J Bacteriol 187(17):6206–6212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Shiraz University of Medical Sciences School of Pharmacy for giving us the opportunity to perform this work on its server.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mozafar Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaie, E., Mohammadi, M., Sakhteman, A. et al. Application of molecular dynamics simulations to design a dual-purpose oligopeptide linker sequence for fusion proteins. J Mol Model 24, 313 (2018). https://doi.org/10.1007/s00894-018-3846-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3846-x

Keywords

Navigation