Skip to main content
Log in

Theoretical rate constant of methane oxidation from the conventional transition-state theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The potential energy surface for the first step of the methane oxidation CH4 + O2➔CH3 + HO2 was studied using the London-Eyring-Polanyi-Sato equation (LEPS) and the conventional transition-state theory (CTST). The calculated activation energy and rate constant values were in good agreement with the experimental and theoretical values reported in the literature using the shock tube technique and coupled cluster method respectively. The rate equation from CTST, although simple, provides good results to study the H-shift between methane and the oxygen molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aul CJ, Metcalfe WK, Burke SM, Curran HJ, Petersen EL (2013) Ignition and kinetic modeling of methane and ethane fuel blends with oxygen: a design of experiments approach. Combust Flame 160:1153–1167. https://doi.org/10.1016/j.combustflame.2013.01.019

    Article  CAS  Google Scholar 

  2. El Merhubi H, Kéromnès A, Catalano G, Lefort B, Le Moyne L (2016) A high pressure experimental and numerical study of methane ignition. Fuel 177:164–172. https://doi.org/10.1016/j.fuel.2016.03.016

    Article  CAS  Google Scholar 

  3. Dale A, Lythall C, Aucott J, Sayer C (2002) High precision calorimetry to determine the enthalpy of combustion of methane. Thermochim Acta 382(1-2):47–54. https://doi.org/10.1016/S0040-6031(01)00735-3

    Article  CAS  Google Scholar 

  4. Chenoweth K, Van Duin ACT, Goddard III WA (2008) ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A 112:1040–1053. https://doi.org/10.1021/jp709896w

    Article  CAS  Google Scholar 

  5. Page AJ, Moghtaderi B (2009) Molecular dynamics simulation of the low-temperature partial oxidation of CH4. J Phys Chem A 113(8):1539–1547. https://doi.org/10.1021/jp809576k

    Article  CAS  Google Scholar 

  6. Srinivasan NK, Michael JV, Harding LB, Klippenstein SJ (2007) Experimental and theoretical rate constants for CH4+O2→CH3+HO2. Combust Flame 149:104–111. https://doi.org/10.1016/j.combustflame.2006.12.010

    Article  CAS  Google Scholar 

  7. Rasmussen CL, Jakobsen JG, Glarborg P (2008) Experimental measurements and kinetic modeling of CH4/O2 and CH4/C2H6/O2conversion at high pressure. In J Chem Kinet 40(12):778–807. https://doi.org/10.1002/kin.20352

    Article  CAS  Google Scholar 

  8. Mai TV-T, Duong MV, Le XT, Huynh LK, Ratkiewicz A (2014) Direct ab initio dynamics calculations of thermal rate constantsfor the CH4 + O2= CH3 + HO2 reaction. Struct Chem 25:1495–1503. https://doi.org/10.1007/s11224-014-0426-2

    Article  CAS  Google Scholar 

  9. Giménez-López J, Millera A, Bilbao R, Alzueta MU (2015) Experimental and kinetic modeling study of the oxy-fuel oxidation of natural gas, CH4 and C2H6. Fuel 160:404–412. https://doi.org/10.1016/j.fuel.2015.07.087

    Article  CAS  Google Scholar 

  10. Hashemi H, Christensen JM, Gersen S, Levinsky H, Klippenstein SJ, Glarborg P (2016) High-pressure oxidation of methane. Combust Flame 172:349–364. https://doi.org/10.1016/j.combustflame.2016.07.016

    Article  CAS  Google Scholar 

  11. Ryu S-O, Shin KS, Hwang SM (2017) Determination of the rate coefficients of the CH4 + O2➔HO2 + CH3 and HCO + O2➔HO2 + CO reactions at high temperatures. Bull Kor Chem Soc 38:228–236. https://doi.org/10.1002/bkcs.11070

    Article  CAS  Google Scholar 

  12. Skinner GB, Lifshitz A, Scheller K, Burcat A (1972) Kinetics of methane oxidation. J Chem Phys 56(8):3853–3861. https://doi.org/10.1063/1.1677790

    Article  CAS  Google Scholar 

  13. Shaw R (1978) Semi-empirical extrapolation and estimation of rate constants for abstraction of H from methane by H, O, HO and O2. J Phys Chem Ref Data 7(3):1179–1190. https://doi.org/10.1063/1.555577

    Article  CAS  Google Scholar 

  14. Tsang W, Hampson RF (1986) Chemical kinetic data vase for combustion chemistry. Part I. Methane and related compounds. J Phys Chem Ref Data 15(3):1087–1279. https://doi.org/10.1063/1.555759

    Article  CAS  Google Scholar 

  15. Baulch DL, Cobos CJ, Cox RA, Esser C, Frank P, Just T, Kerr JA, Pilling MJ, Troe J, Walker RW, Warnatz J (1992) Evaluated kinetic data for combustion modeling. J Phys Chem Ref Data 21(3):411–734. https://doi.org/10.1063/1.555908

    Article  CAS  Google Scholar 

  16. Baulch DL, Bowman CT, Cobos CJ, Cox RA, Just T, Kerr JA, Pilling MJ, Stocker D, Troe J, Tsang W, Walker RW, Warnatz J (2005) Evaluated kinetic data for combustion modeling: supplement II. J Phys Chem Ref Data 34:757–1397. https://doi.org/10.1063/1.1748524

    Article  CAS  Google Scholar 

  17. Laidler KJ (1987) Chemical kinetics, 3rd edn. Harper Collins, New York

    Google Scholar 

  18. Galindo Hernández F, Méndez Ruiz F (2003) Determinación de la energía de activación para la reacción de H+H2 mediante el cálculo de superficies de energía potencial. Rev Mex Fis 49(3):264–270

    Google Scholar 

  19. Moss SJ, Coady CJ (1983) Potential-energy surfaces and transition-state theory. J Chem Educ 60(6):455–461. https://doi.org/10.1021/ed060p455

    Article  CAS  Google Scholar 

  20. Sato S (1955) On a new method of drawing the potential energy surface. J Chem Phys 23:592–593. https://doi.org/10.1063/1.1742043

    Article  CAS  Google Scholar 

  21. Wang X, Ben-Nun M, Levine RD (1995) Peripheral dynamics of the Cl + CH4 → HCl + CH3 reaction. Chem Phys 197:1–17. https://doi.org/10.1016/0301-0104(95)00134-A

    Article  CAS  Google Scholar 

  22. Liu Y, Liu Z, Lv G, Jiang L, Sun J (2006) Product polarization distribution: Stereodynamics of the reactions Cl+CH4→HCl+CH3 and Cl+CD4→DCl+CD3. Chem Phys Lett 423:157–164. https://doi.org/10.1016/j.cplett.2006.03.059

    Article  CAS  Google Scholar 

  23. Lemon WJ, Hase WL (1987) A potential energy function for the hydroperoxyl radical. J Phys Chem 91(6):1596–1602. https://doi.org/10.1021/j100290a061

    Article  CAS  Google Scholar 

  24. Zhu R, Hsu C-C, Lin MC (2001) Ab initio study of the CH3 + O2 reaction: kinetics, mechanism and product branching probabilities. J Chem Phys 115(1):195–203. https://doi.org/10.1063/1.1376128

    Article  CAS  Google Scholar 

  25. Ase P, Bock W, Snelson A (1986) Alkylperoxy and alkyl radicals. 1. Infrared spectra of CH3O2 and CH3O4CH3 and the ultraviolet photolysis of CH3O2 in argon+oxygen matrices. J Phys Chem 90(10):2099–2109. https://doi.org/10.1021/j100401a024

    Article  CAS  Google Scholar 

  26. Knox JH (1971) Molecular partition functions. Wiley-Interscience, London

    Google Scholar 

  27. Kalman D (1982) Dot products, spherical coordinates, and 109°. Int J Math Educ Sci Technol 13(4):493–494. https://doi.org/10.1080/0020739820130412

    Article  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 revision B.01. Gaussian Inc, Wallingford

    Google Scholar 

  29. MATLAB version 7.0.0. R14 (2004) The MathWorks Inc., Natick

  30. Ree J, Kim YH, Shin HK (2007) Classical trajectory study of the formation of XeH and XeCl+ in the Xe++HCl collision. J Chem Phys 127(5):054304-1–054304-13. https://doi.org/10.1063/1.2751499

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CONACYT-México for scholarship number 207214 and 18053 and 163234 CONACYT-México project grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Méndez.

Additional information

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Electronic supplementary material

The Partition functions and kinetic constant values are included in the electronic supplementary material.

ESM 1

(DOCX 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aranda, C., Richaud, A., Méndez, F. et al. Theoretical rate constant of methane oxidation from the conventional transition-state theory. J Mol Model 24, 294 (2018). https://doi.org/10.1007/s00894-018-3829-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3829-y

Keywords

Navigation