Skip to main content
Log in

An accurate comparative theoretical study of the interaction of furan, pyrrole, and thiophene with various gaseous analytes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

An accurate comparison of the interaction of furan, pyrrole, and thiophene with different gaseous analytes is vital not only for understanding the sensing mechanism of corresponding polymers but also for rational design of new materials. In the present study, DFT calculations at (M05-2X/Aug-cc-PVDZ) have been performed to investigate the interaction behavior of furan, pyrrole, and thiophene (as models for their corresponding polymers) with different analytes (NH3, CO2, CO, N2H4, HCN, H2O2, H2S, CH4, CH3OH, SO2, SO3, H2O). The interaction of heterocycles with analytes is illustrated by changes in geometric, energetic, and electronic properties. SAPT calculations were performed for energy decomposition analysis to study the contribution of non-covalent components of the total interaction energy for each complex. Analysis of energetic and electronic properties reveals that all heterocycles are highly sensitive to SO3. The results suggest that sensing ability of polypyrrole is higher than polyfuran and polythiophene for all analytes.

SAPT0 energies (kcal mol-1) of furan, pyrrole, and thiophene with various gaseous analytesᅟ

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Harun MH, Saion E, Kassim A et al. (2007) Conjugated conducting polymers: a brief overview. Sensors Peterbrgh NH 2:63–68

  2. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353

    Article  CAS  Google Scholar 

  3. Lange U, Roznyatovskaya NV, Mirsky VM (2008) Conducting polymers in chemical sensors and arrays. Anal Chim Acta 614:1–26

    Article  CAS  Google Scholar 

  4. Ak M, Yigitsoy B, Yagci Y, Toppare L (2007) Gas sensing property of a conducting copolymer. E-polymers 42

  5. Patra A, Bendikov M (2010) Polyselenophenes. J Mater Chem 20:422–433

    Article  CAS  Google Scholar 

  6. Ullah H, Shah A-HA, Bilal S, Ayub K (2014) Doping and dedoping processes of polypyrrole: DFT study with hybrid Functionals. J Phys Chem C 118:17819–17830

    Article  CAS  Google Scholar 

  7. Kassim A, Basar ZB, Mahmud HNME (2002) Effects of preparation temperature on the conductivity of polypyrrole conducting polymer. J Chem Sci 114:155–162

    Article  CAS  Google Scholar 

  8. Gomes AL, Casanovas J, Bertran O et al. (2011) Electronic properties of poly(thiophene-3-methyl acetate). J Polym Res 18:1509–1517

    Article  CAS  Google Scholar 

  9. Zade SS, Bendikov M (2006) From Oligomers to polymer: convergence in the HOMO−LUMO gaps of conjugated Oligomers. Org Lett 8:5243–5246

    Article  CAS  Google Scholar 

  10. Yoon H (2013) Current trends in sensors based on conducting polymer nanomaterials. Nano 3:524–549

    Article  CAS  Google Scholar 

  11. Hutchison GR, Zhao Y-J, Delley B et al. (2003) Electronic structure of conducting polymers: limitations of oligomer extrapolation approximations and effects of heteroatoms. Phys Rev B 68:35204

    Article  Google Scholar 

  12. Alemán C, Estrany F, Armelin E et al. (2007) A theoretical study on the interaction between N-methylpyrrole and 3,4-ethylenedioxythiophene units in copolymer molecules. Polymer (Guildf) 48:6162–6169

    Article  Google Scholar 

  13. Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25:1463–1502

    Article  CAS  Google Scholar 

  14. Mahmud HNME, Kassim A, Zainal Z, Yunus WMM (2006) Fourier transform infrared study of polypyrrole–poly(vinyl alcohol) conducting polymer composite films: evidence of film formation and characterization. J Appl Polym Sci 100:4107–4113

    Article  CAS  Google Scholar 

  15. Rad AS, Nasimi N, Jafari M et al. (2015) Ab-initio study of interaction of some atmospheric gases (SO2, NH3, H2O, CO, CH4 and CO2) with polypyrrole (3PPy) gas sensor: DFT calculations. Sensors Actuators B Chem 220:641–651

    Article  CAS  Google Scholar 

  16. Hernandez SC, Chaudhuri D, Chen W et al. (2007) Single Polypyrrole Nanowire ammonia gas sensor. Electroanalysis 19:2125–2130

    Article  CAS  Google Scholar 

  17. Rahman MA, Kumar P, Park D-S, Shim Y-B (2008) Electrochemical sensors based on organic conjugated polymers. Sensors 8:118–141

    Article  CAS  Google Scholar 

  18. Rabias I, Howlin BJ (2001) A combined ab initio and semi-empirical study on the theoretical vibrational spectra and physical properties of polypyrrole. Comput Theor Polym Sci 11:241–249

    Article  CAS  Google Scholar 

  19. Bai H, Shi G (2007) Gas sensors based on conducting polymers. Sensors 7:267–307

    Article  CAS  Google Scholar 

  20. Ratcliffe NM (1990) Polypyrrole-based sensor for hydrazine and ammonia. Anal Chim Acta 239:257–262

    Article  CAS  Google Scholar 

  21. Kumar Ram M, Yavuz O, Lahsangah V, Aldissi M (2005) CO gas sensing from ultrathin nano-composite conducting polymer film. Sensors Actuators B Chem 106:750–757

  22. Timofeeva ON, Lubentsov BZ, Sudakova YZ et al. (1991) Conducting polymer interaction with gaseous substances. I. Water Synth Met 40:111–116

  23. Cho J-H, Yu J-B, Kim J-S et al. (2005) Sensing behaviors of polypyrrole sensor under humidity condition. Sensors Actuators B Chem 108:389–392

    Article  CAS  Google Scholar 

  24. Magaraphan R, Thuimthad A (2007) Polypyrrole-Organoclay Nanocomposites for gas sensors. NSTI-Nanotech 1:662–665

    CAS  Google Scholar 

  25. Hossein SH, Entezanti AA (1999) Polypyrrole based toxic gas sensors by mass and conductivity measurements. Iran Polym J 8:10261263199

    Google Scholar 

  26. Eslami M, Vahabi V, Ahmadi Peyghan A (2016) Sensing properties of BN nanotube toward carcinogenic 4-chloroaniline: a computational study. Phys E 76:6–11

    Article  CAS  Google Scholar 

  27. Hadipour NL, Ahmadi Peyghan A, Soleymanabadi H (2015) Theoretical study on the al-doped ZnO Nanoclusters for CO chemical sensors. J Phys Chem C 119:6398–6404

    Article  CAS  Google Scholar 

  28. Peyghan AA, Rastegar SF, Hadipour NL (2014) DFT study of NH3 adsorption on pristine, Ni- and Si-doped graphynes. Phys Lett A 378:2184–2190

    Article  CAS  Google Scholar 

  29. Ullah H, Ayub K, Ullah Z et al. (2013) Theoretical insight of polypyrrole ammonia gas sensor. Synth Met 172:14–20

    Article  CAS  Google Scholar 

  30. Ullah H, Shah A-HA, Bilal S, Ayub K (2013) DFT study of Polyaniline NH 3 , CO 2 , and CO gas sensors: comparison with recent experimental data. J Phys Chem C 117:23701–23711

    Article  CAS  Google Scholar 

  31. Liu S-S, Bian L-J, Luan F et al. (2012) Theoretical study on polyaniline gas sensors: examinations of response mechanism for alcohol. Synth Met 162:862–867

    Article  CAS  Google Scholar 

  32. Romanova J, Petrova J, Tadjer A, Gospodinova N (2010) Polyaniline–water interactions: a theoretical investigation with the polarisable continuum model. Synth Met 160:1050–1054

    Article  CAS  Google Scholar 

  33. Bilal S, Bibi S, Ahmad SM, Shah A-HA (2015) Counterpoise-corrected energies, NBO, HOMO–LUMO and interaction energies of poly(o-aminophenol) for ammonia sensing by DFT methods. Synth Met 209:143–149

    Article  CAS  Google Scholar 

  34. Frisch MJT, Schlegel GW, Scuseria HB, Robb GE, Cheeseman MA, Scalmani JR, Barone G, Mennucci V, Petersson B (2013) Gaussian 09 Rev. D.0.1. Gaussian Inc, Wallingford

  35. Dennington, Roy; Keith, Todd; Millam J (2009) GaussView 5.0. Semichem Inc, Shawnee Mission, KS

  36. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with Pparametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382

    Article  Google Scholar 

  37. Turney JM, Simmonett AC, Parrish RM, Hohenstein EG, Evangelista F, Fermann JT, Mintz BJ, Burns LA, Wilke JJ, Abrams ML, Russ NJ, Leininger ML, Janssen CL, Seidl ET, Allen WD, Schaefer HF, King T (2011) PSI4: an open-source ab initio electronic structure program. WIREs Comput Mol Sci 2:556–565

    Google Scholar 

  38. Cybulski H, Sadlej J (2008) Symmetry-adapted perturbation-theory interaction-energy decomposition for hydrogen-bonded and stacking structures. J Chem Theory Comput 4:892–897

    Article  Google Scholar 

  39. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131:14102

    Article  Google Scholar 

  40. Shokuhi Rad A, Zardoost MR, Abedini E (2015) First-principles study of terpyrrole as a potential hydrogen cyanide sensor: DFT calculations. J Mol Model 21:273

    Article  Google Scholar 

  41. Rad AS, Valipour P, Gholizade A, Mousavinezhad SE (2015) Interaction of SO2 and SO3 on terthiophene (as a model of polythiophene gas sensor): DFT calculations. Chem Phys Lett 639:29–35

    Article  CAS  Google Scholar 

  42. Shokuhi Rad A, Valipour P (2015) Interaction of methanol with some aniline and pyrrole derivatives: DFT calculations. Synth Met 209:502–511

    Article  CAS  Google Scholar 

  43. Shokuhi Rad A (2015) Application of polythiophene to methanol vapor detection: an ab initio study. J Mol Model 21:285

    Article  Google Scholar 

  44. Shokuhi Rad A, Esfahanian M, Ganjian E et al. (2016) The polythiophene molecular segment as a sensor model for H2O, HCN, NH3, SO3, and H2S: a density functional theory study. J Mol Model 22:127

    Article  Google Scholar 

  45. Rad AS (2016) Terthiophene as a model sensor for some atmospheric gases: theoretical study. Mol Phys 114:584–591

    Article  CAS  Google Scholar 

  46. Wasim F, Mahmood T, Ayub K (2016) An accurate cost effective DFT approach to study the sensing behaviour of polypyrrole towards nitrate ions in gas and aqueous phases. Phys Chem Chem Phys 18:19236–19247

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Higher Education Commission of Pakistan (Grants No. 1899, 2469 and 2981) and COMSATS Institute of Information Technology Abbottabad, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurshid Ayub.

Ethics declarations

Ethical statements

The manuscript has not been submitted to more than one journal for simultaneous consideration.

Electronic supplementary material

ESM 1

(DOCX 3432 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajid, H., Mahmood, T. & Ayub, K. An accurate comparative theoretical study of the interaction of furan, pyrrole, and thiophene with various gaseous analytes. J Mol Model 23, 295 (2017). https://doi.org/10.1007/s00894-017-3458-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3458-x

Keywords

Navigation