Skip to main content
Log in

Electronic properties of poly(thiophene-3-methyl acetate)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The electronic structure of poly(thiophene-3-methyl acetate) has been investigated using UV–vis absorption spectroscopy and quantum mechanical calculations. Experimental measures in chloroform solution indicate that the π-conjugation length increases with the polymer concentration, which is reflected by the red shift of the absorbance peak of the π-π* transition. On the other hand, the energy required for the π-π* transition has been found to decrease with the volatility of the solvent for concentrated polymer solutions, even though the influence of the solvent is very small for dilute solutions. Quantum mechanical calculations indicate that the interactions between the π-conjugated backbone and the methyl acetate side groups are very weak. On the other hand, the lowest energy transition predicted for an infinite polymer chain that adopts the anti-gauche and all-anti conformations is 2.8 and 1.9 eV, respectively. Finally, measurements on spin-casted nanofilms reflect that the π-π* transition energy increases with the thickness, which has been attributed to the distortion of the molecular conformation. In spite of this, the energy gap obtained for the thinnest film (1.52 eV) is significantly smaller than that determined for dilute and concentrated chloroform solutions (2.56 and 2.09 eV, respectively).

The π-conjugation length and the energy required for the π-π* transition of poly(thiophene-3-methyl acetate) have been examined in different environments (i.e. gas-phase, dilute and concentrated solutions considering solvents with different polarity and volatility, and spin-casted nanofilms) using a combination of UV-vis spectroscopy and quantum mechanical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Scheme 4
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Skotheim TA, Reynolds JR (2007) Handbook of conducting polymers, 3rd edn. CRC, Taylor and Francis, Boca Raton

    Google Scholar 

  2. Wallace GG, Spinks GM, Kane-Maguire LAP, Teasdale PR (2009) Conductive electroactive polymers, 3rd edn. CRC, Taylor and Francis, Boca Raton

    Google Scholar 

  3. Chen TA, Wu X, Rieke RD (1995) J Am Chem Soc 117:233–244

    Article  CAS  Google Scholar 

  4. Yang C, Orfino FP, Holdcroft S (1996) Macromolecules 29:6510–6517

    Article  CAS  Google Scholar 

  5. McCullough RD (1998) Adv Mater 10:93–116

    Article  CAS  Google Scholar 

  6. Patil OA, Ikenoue Y, Wudl F, Heeger AJ (1987) J Am Chem Soc 109:1858–1859

    Article  CAS  Google Scholar 

  7. Chayer M, Faïd K, Leclerc M (1997) Chem Mater 9:2902–2905

    Article  CAS  Google Scholar 

  8. Kim B, Chen L, Gong J, Osada Y (1999) Macromolecules 32:3964–3969

    Article  CAS  Google Scholar 

  9. Visy K, Kanlare J, Kriván E (2000) Electrochim Acta 45:3851–3864

    Article  CAS  Google Scholar 

  10. Armelin E, Bertran O, Estrany F, Salvatella R, Alemán C (2009) Eur Polym J 45:2211–2221

    Article  CAS  Google Scholar 

  11. Bertran O, Armelin E, Estrany F, Gomes A, Torras J, Alemán C (2010) J Phys Chem B 114:6281–6290

    Article  CAS  Google Scholar 

  12. Bertran O, Pfeiffer P, Torras J, Armelin E, Estrany F, Alemán C (2007) Polymer 48:6955–6964

    Article  CAS  Google Scholar 

  13. Bertran O, Armelin E, Torras J, Estrany F, Codina M, Alemán C (2008) Polymer 49:1972–1980

    Article  CAS  Google Scholar 

  14. Takeoka Y, Iguchi M, Rikukawa M, Sanui K (2005) Synth Met 154:109–112

    Article  CAS  Google Scholar 

  15. Constantine CA, Mello SV, Dupont A, Cao X, Santos D Jr, Oliveira ON Jr, Strixino FT, Pereira EC, Cheng TC, Defrank JJ, Leblanc RM (2003) J Am Chem Soc 125:1805–1809

    Article  CAS  Google Scholar 

  16. Yoon YS, Park K-H, Lee J-C (2009) Macromol Chem Phys 210:1510–1518

    Article  CAS  Google Scholar 

  17. Kim Y-G, Kim J, Ahn H, Kang B, Sung C, Samuelson LA, Kumar J (2003) J Macromol Sci Pure Appl Chem A40:1307–1333

    CAS  Google Scholar 

  18. Thuwachaowsoan K, Chotpattananont D, Sirivat A, Rujiravanit R, Shwank JW (2007) Mater Sci Eng B 140:23–30

    Article  CAS  Google Scholar 

  19. Zhang Z, Wang L, Deng J, Wan M (2008) React Funct Polym 68:1081–1087

    Article  CAS  Google Scholar 

  20. Jiang Y, Wu P (2008) Appl Spectrosc 62:207

    Article  CAS  Google Scholar 

  21. Nilsson KP, Rydberg J, Baltzer L, Inganäs O (2004) Proc Natl Acad Sci 101:11197–11202

    Article  CAS  Google Scholar 

  22. Zang F, Srinivivasan MP (2005) Thin Solid Films 479:95–102

    Article  Google Scholar 

  23. Zang F, Srinivivasan MP (2008) Macromol Chem Phys 112:223–224

    Google Scholar 

  24. Hsieh KH, Ho KS, Wang YZ, Ko SD, Fu SC (2001) Synth Met 123:217–224

    Article  CAS  Google Scholar 

  25. Faid K, Leclerc M (1998) J Am Chem Soc 120:5274–5278

    Article  Google Scholar 

  26. Watanabe H, Kunitake T (2007) Adv Mater 19:909–912

    Article  CAS  Google Scholar 

  27. Jaczewska J, Budkowski A, Bernasik A, Moons E, Rysz J (2008) Macromolecules 41:4802–4810

    Article  CAS  Google Scholar 

  28. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  30. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  31. Casanovas J, Zanuy D, Alemán C (2005) Polymer 46:9452–9460

    Article  CAS  Google Scholar 

  32. Koopmans T (1934) Physica 1:104–113

    Article  Google Scholar 

  33. Janak JF (1978) Phys Rev B 18:7165–7168

    Article  CAS  Google Scholar 

  34. Levy M, Nagy A (1999) Phys Rev A 59:1687–1689

    Article  CAS  Google Scholar 

  35. de Souza JM, Pereira EC (2001) Synth Met 118:167–170

    Article  Google Scholar 

  36. Jiang Y, Shen Y, Wu P (2008) J Col Interf Sci 319:398–405

    Article  CAS  Google Scholar 

  37. Aaron JJ, Fall M (2000) Spectrochim Acta Part A 56:1391–1397

    Article  Google Scholar 

  38. Calado HDR, Matencio CL, Donnci LA, Cury LA, Rieumont J, Pernaut JM (2008) Synth Met 158:1037–1042

    Article  CAS  Google Scholar 

  39. Alves MRA, Calado HDR, Donnici CL, Matencio T (2010) Synth Met 160:22–27

    Article  CAS  Google Scholar 

  40. Meng H, Zheng J, Lovinger AJ, Wang B-C, Van Patten PG, Bao Z (2003) Chem Mater 15:1778–1787

    Article  CAS  Google Scholar 

  41. Casanovas JC, Alemán C (2007) J Phys Chem C 111:4823–4830

    Article  CAS  Google Scholar 

  42. Rodríguez-Ropero F, Casanovas J, Alemán C (2008) J Comput Chem 29:69–78

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by MICINN and FEDER (Grant MAT2009-09138), by the Generalitat de Catalunya (research group 2009 SGR 925 and XRQTC). Computer resources were generously provided by the “Centre de Supercomputació de Catalunya” (CESCA). A.G. acknowledges financial support from the Euro Brasilian Windows agency (Grant No. 41309-EM-1-2008-PT-ERAMUNDUS-ECW-L16) for his 6-month stay at the UPC. Support for the research of C.A. was received through the prize “ICREA Academia” for excellence in research funded by the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elaine Armelin or Carlos Alemán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, A.L., Casanovas, J., Bertran, O. et al. Electronic properties of poly(thiophene-3-methyl acetate). J Polym Res 18, 1509–1517 (2011). https://doi.org/10.1007/s10965-010-9556-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9556-4

Keywords

Navigation