Skip to main content
Log in

Polythiophene derivatives as chemical sensors: a DFT study on the influence of side groups

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Conjugated polymers have been considered promising candidates for applications in chemical sensors, mainly due to their high versatility of synthesis, low cost, light weight, and suitable optoelectronic properties. In this context, polythiophene (PT) derivatives have been successfully employed. However, at the same time that the versatility of the synthesis allows the production of varied derivatives, the complexity of interactions with analytes hinders an efficient design of compounds with improved sensing properties. In the present report, electronic structure calculations were employed to identify promising PT derivatives for chemical sensor applications. Structural, optoelectronic, and reactivity properties of a set of branched PT derivatives were evaluated. Adsorption studies considering different gaseous compounds were conducted for selected systems. The results suggest that an appropriate choice of the side groups can lead to derivatives with improved sensorial properties. In particular, PT-CN derivative was identified as the most promising compound for high sensitive chemical sensors towards SO2 and NH3 analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H (2012). Sensors 12(12):9635–9665. https://doi.org/10.3390/s120709635

    PubMed  Google Scholar 

  2. Chen Z, Lu C (2005). Sens. Lett. 3(4):274–295. https://doi.org/10.1166/sl.2005.045

    CAS  Google Scholar 

  3. Batzill M (2006). Sensors 6(10):1345–1366. https://doi.org/10.3390/s6101345

    CAS  Google Scholar 

  4. Yoon H (2013). Nanomaterials 3(3):524–549. https://doi.org/10.3390/nano3030524

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bai H, Shi G (2007). Sensors 7(3):267–307. https://doi.org/10.3390/s7030267

    CAS  Google Scholar 

  6. Zeng W, Zhang MQ, Rong MZ, Zheng Q (2007). Sens. Actuators, B 124(1):118–126. https://doi.org/10.1016/j.snb.2006.12.021

    CAS  Google Scholar 

  7. Shokuhi-Rad A, Valipour P, Gholizade A, Mousavinezhad SE (2015). Chem Phys Lett 639:29–35. https://doi.org/10.1016/j.cplett.2015.08.062

    Google Scholar 

  8. Shen J, Fujita K, Matsumoto T, Hongo C, Misaki M, Ishida K, Mori A, Nishino T (2017). Macromol Chem Phys 218(19):1700197. https://doi.org/10.1002/macp.201700197

    Google Scholar 

  9. Huang Y, Pappas HC, Zhang L, Wang S, Cai R, Tan W, Wang S, Whitten DG, Schanze KS (2017). Chem Mater 29(15):6389–6395. https://doi.org/10.1021/acs.chemmater.7b01796

    CAS  Google Scholar 

  10. Lodola F, Martino N, Tullii G, Lanzani G, Antognazza MR (2017). Sci Rep 7 (1):8477. https://doi.org/10.1038/s41598-017-08541-6

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Faisal M, Harraz FA, Al-Salami AE, Al-Sayari SA, Al-Hajry A, Al-Assiri MS (2018). Mat Chem Phys 214:126–134. https://doi.org/10.1016/j.matchemphys.2018.04.085

    CAS  Google Scholar 

  12. Xu Z-X, Roy V AL (2014). Chin Phys B 23(4):048501. https://doi.org/10.1088/1674-1056/23/4/048501

    Google Scholar 

  13. Toss H, Suspne C, Piro B, Yassar A, Crispin X, Kergoat L, Pham M-C, Berggren M (2014). Org Electron 15(10):2420–2427. https://doi.org/10.1016/j.orgel.2014.06.017

    CAS  Google Scholar 

  14. Fichou D (ed) (1998) Handbook of oligo-? and polythiophenes, 1st edn. Wiley, New York

  15. Pathiranage T M SK, Dissanayake DS, Niermann CN, Ren Y, Biewer MC, Stefan MC (2017). J Polym Sci Part A: Polym Chem 55(20):3327–3346. https://doi.org/10.1002/pola.28726

    CAS  Google Scholar 

  16. Granström M, Harrison MG, Friend RH (1998). In: Fichou D (ed) Handbook of oligo- and polythiophenes. 1st edn. Wiley, pp 405–458

  17. Kaloni TP, Giesbrecht PK, Schreckenbach G, Freund MS (2017). Chem Mater 29 (24):10248–10283. https://doi.org/10.1021/acs.chemmater.7b03035

    CAS  Google Scholar 

  18. Sajid H, Ayub K, Mahmood T (2019). New J Chem 43(35):14120–14133. https://doi.org/10.1039/C9NJ01894H

    CAS  Google Scholar 

  19. ShokuhiRad A, Esfahanian M, Ganjian E, Tayebi H-, Novir SB (2016). J Mol Model 22(6):127. https://doi.org/10.1007/s00894-016-3001-5

    Google Scholar 

  20. Ryan A VM, Taylor CJ (2010) Computational methods for sensor material selection. Springer, Dordrecht

    Google Scholar 

  21. Golsanamlou Z, BagheriTagani M, RahimpourSoleimani H (2018). Phys. E 100:31–39. https://doi.org/10.1016/j.physe.2018.02.024

    CAS  Google Scholar 

  22. Dong BX, Nowak C, Onorato JW, Strzalka J, Escobedo FA, Luscombe CK, Nealey PF, Patel SN (2019). Chem Mater 31(4):1418–1429. https://doi.org/10.1021/acs.chemmater.8b05257

    CAS  Google Scholar 

  23. Carey FA, Sundberg RJ (2007) Structural effects on stability and reactivity. In: Advanced organic chemistry, Advanced organic chemistry. Springer, US, pp 253–388

  24. Choi J, Kim S, Park J, Lee S, Seo Y, Park D (2019). Polymers 11(4):662. https://doi.org/10.3390/polym11040662

    CAS  PubMed Central  Google Scholar 

  25. Lacerda G R BS, Calado CR, Calado H DR (2019). J Solid State Electrochem 23 (3):823–835. https://doi.org/10.1007/s10008-018-04185-2

    CAS  Google Scholar 

  26. Minkler MJ, Kim J, Lawson KE, Ali A, Zhao R, Adamczyk AJ, Beckingham BS (2019). Mater Lett 256:126563. https://doi.org/10.1016/j.matlet.2019.126563

    Google Scholar 

  27. Warshawsky R, Vaal J, Hewavitharanage P (2017). Eur J Chem 8(4):321–327. https://doi.org/10.5155/eurjchem.8.4.321-327.1634

    CAS  Google Scholar 

  28. Zhang B, Yu Y, Zhou J, Wang Z, Tang H, Xie S, Xie Z, Hu L, Yip HL, Ye L, Ade H, Liu Z, He Z, Duan C, Huang F, Cao Y (2020). Adv Energy Mater 10(12):1904247. https://doi.org/10.1002/aenm.201904247

    CAS  Google Scholar 

  29. deAraújoNeto LN, doCarmo Alvesde Lima M, deOliveira JF, deSouza ER, Buonafina M DS, VitorAnjos MN, Brayner FA, Alves LC, Neves RP, Mendonca-Junior F JB (2017). Chem-Biol Interact 272:172–181. https://doi.org/10.1016/j.cbi.2017.05.005

    Google Scholar 

  30. Hussein MA (2018). J Polym Environ 26 (3):1194–1205. https://doi.org/10.1007/s10924-017-1023-4

    CAS  Google Scholar 

  31. Cui H, Yang X, Peng J, Qiu F (2017). Soft Matter 13(31):5261–5268. https://doi.org/10.1039/C7SM01126A

    CAS  PubMed  Google Scholar 

  32. Jeong I, Jo JW, Bae S, Son HJ, Ko MJ (2019). Dyes Pigm 164:1–6. https://doi.org/10.1016/j.dyepig.2019.01.002

    CAS  Google Scholar 

  33. Malkeshi H, MilaniMoghaddam H (2016). J Polym Res 23(6):108. https://doi.org/10.1007/s10965-016-0999-0

    Google Scholar 

  34. Dutta K, Rana D (2019). Eur Polym J 116:370–385. https://doi.org/10.1016/j.eurpolymj.2019.04.033

    CAS  Google Scholar 

  35. Stewart J JP (1990). J Comput-Aided Mol Des 4(1):1–103. https://doi.org/10.1007/BF00128336

    PubMed  Google Scholar 

  36. Oliveira EF, Lavarda FC (2013). J Polym Sci Part B: Polym Phys 51(18):1350–1354. https://doi.org/10.1002/polb.23338

    Google Scholar 

  37. Niaz S, Gülseren O, Khan MA, Ullah I (2018). Eur Phys J Plus 133(11):448. https://doi.org/10.1140/epjp/i2018-12279-3

    Google Scholar 

  38. Nguyen HT, Truong TN (2010). Chem Phys Lett 499 (4-6):263–267. https://doi.org/10.1016/j.cplett.2010.09.049

    CAS  Google Scholar 

  39. Tripathy SK, Kitchen D, Druy MA (1983). Macromolecules 16(2):190–192. https://doi.org/10.1021/ma00236a007

    CAS  Google Scholar 

  40. Yang S, Li L, Cholli AL, Kumar J, Tripathy SK (2003). Biomacromolecules 4 (2):366–371. https://doi.org/10.1021/bm025687p

    CAS  PubMed  Google Scholar 

  41. Runge E, Gross E KU (1984). Phys Rev Lett 52(12):997–1000. https://doi.org/10.1103/PhysRevLett.52.997

    CAS  Google Scholar 

  42. Marques M, Maitra NT, Nogueira F MS, Gross E KU, Rubio A (eds) (2012) Fundamentals of time-dependent density functional theory, Lecture notes in physics. Springer, Heidelberg

  43. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994). J Phys Chem 98 (45):11623–11627. https://doi.org/10.1021/j100096a001

    CAS  Google Scholar 

  44. Becke AD (1993). J Chem Phys 98(7):5648–5652. https://doi.org/10.1063/1.464913

    CAS  Google Scholar 

  45. Becke AD (1993). J Chem Phys 98(2):1372–1377. https://doi.org/10.1063/1.464304

    CAS  Google Scholar 

  46. Buevich AV, Saurí J, Parella T, DeTommasi N, Bifulco G, Williamson RT, Martin GE (2019). Chem Commun 55(41):5781–5784. https://doi.org/10.1039/C9CC02469G

    CAS  Google Scholar 

  47. Zhao Y, Truhlar DG (2006). J Phys Chem A 110 (49):13126–13130. https://doi.org/10.1021/jp066479k

    CAS  PubMed  Google Scholar 

  48. Körzdörfer T, Sears JS, Sutton C, Brëdas J-L (2011). J Chem Phys 135(20):204107. https://doi.org/10.1063/1.3663856

    PubMed  Google Scholar 

  49. Wykes M, Milián-Medina B, Gierschner J (2013) Front Chem 1. https://doi.org/10.3389/fchem.2013.00035

  50. Oliveira EF, Roldao JC, Milián-Medina B, Lavarda FC, Gierschner J (2016). Chem Phys Lett 645:169–173. https://doi.org/10.1016/j.cplett.2015.12.059

    CAS  Google Scholar 

  51. Oliveira EF, Lavarda FC (2017). Mol Simul 43(18):1496–1501. https://doi.org/10.1080/08927022.2017.1321759

    CAS  Google Scholar 

  52. Meier H, Stalmach U, Kolshorn H (1997). Acta Polym 48(9):379–384. https://doi.org/10.1002/actp.1997.010480905

    CAS  Google Scholar 

  53. Batagin-Neto A, Oliveira EF, Graeff CFO, Lavarda FC (2013). Mol Simul 39(4):309–321. https://doi.org/10.1080/08927022.2012.724174

    CAS  Google Scholar 

  54. Gierschner J, Cornil J, Egelhaaf H-J (2007). Adv Mater 19 (2):173–191. https://doi.org/10.1002/adma.200600277

    CAS  Google Scholar 

  55. Yang W, Mortier WJ (1986). J Am Chem Soc 108 (19):5708–5711. https://doi.org/10.1021/ja00279a008

    CAS  PubMed  Google Scholar 

  56. Lascane LG, Oliveira EF, Batagin-Neto A (2020). MRS Adv 5(10):497–503. https://doi.org/10.1557/adv.2020.203

    CAS  Google Scholar 

  57. Mandú LO, Batagin-Neto A (2018). J Mol Model 24(7):157. https://doi.org/10.1007/s00894-018-3660-5

    PubMed  Google Scholar 

  58. Lascane, LG, Oliveira, EF, Galvão, DS, Batagin-Neto, A (2020) Eur Polym J:110085. https://doi.org/10.1016/j.eurpolymj.2020.110085

  59. DeProft F, VanAlsenoy C, Peeters A, Langenaeker W, Geerlings P (2002). J Comput Chem 23(12):1198–1209. https://doi.org/10.1002/jcc.10067

    CAS  Google Scholar 

  60. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Revision B.01. http://gaussian.com/

  61. Gans JD, Shalloway D (2001). J Mol Graphics Modell 19(6):557–559, 609. https://doi.org/10.1016/S1093-3263(01)00090-0

    CAS  Google Scholar 

  62. Cummins PL, Titmuss SJ, Jayatilaka D, Bliznyuk AA, Rendell AP, Gready JE (2002). Chem Phys Lett 352(3-4):245–251. https://doi.org/10.1016/S0009-2614(01)01417-8

    CAS  Google Scholar 

  63. Boys SF, Bernardi F (1970). Mol Phys 19(4):553–566. https://doi.org/10.1080/00268977000101561

    CAS  Google Scholar 

  64. Allouche A-R (2011). J Comput Chem 32(1):174–182. https://doi.org/10.1002/jcc.21600

    CAS  PubMed  Google Scholar 

  65. Bundgaard E, Krebs FC (2007). Sol Energy Mater Sol Cells 91 (11):954–985. https://doi.org/10.1016/j.solmat.2007.01.015

    CAS  Google Scholar 

  66. Zhang L, Colella NS, Cherniawski BP, Mannsfeld S CB, Briseno AL (2014). ACS Appl Mater Interfaces 6(8):5327–5343. https://doi.org/10.1021/am4060468

    CAS  PubMed  Google Scholar 

  67. Tokuda T, Hoshino K (2016). Polymer J 48(12):1141–1149. https://doi.org/10.1038/pj.2016.86

    CAS  Google Scholar 

  68. Alhalasah W, Holze R (2007). J Solid State Electrochem 11(12):1605–1612. https://doi.org/10.1007/s10008-006-0244-6

    CAS  Google Scholar 

  69. Fréchette M, Belletete M, Bergeron J-Y, Durocher G, Leclerc M (1997). Synth Met 84(1-3):223–224. https://doi.org/10.1016/S0379-6779(97)80723-0

    Google Scholar 

  70. Takimiya K, Osaka I, Nakano M (2014). Chem Mater 26(1):587–593. https://doi.org/10.1021/cm4021063

    CAS  Google Scholar 

  71. Rahimi K, Botiz I, Agumba JO, Motamen S, Stingelin N, Reiter G (2014). RSC Adv 4(22):11121–11123. https://doi.org/10.1039/C3RA47064D

    CAS  Google Scholar 

  72. Savan EbruKUYUMCU, Erdogdu G (2017). J Solid State Electrochem 21(8):2209–2217. https://doi.org/10.1007/s10008-017-3549-8

    CAS  Google Scholar 

  73. Öztürk S, Kösemen A, Sen Z, Kilinc N, Harbeck M (2016). Sensors 16(4):423. https://doi.org/10.3390/s16040423

    Google Scholar 

  74. Hamidi-Sakr A, Schiefer D, Covindarassou S, Biniek L, Sommer M, Brinkmann M (2016). Macromolecules 49(9):3452–3462. https://doi.org/10.1021/acs.macromol.6b00495

    CAS  Google Scholar 

  75. Baskan H, Unsal C, Karakas H, Sarac AS (2017). Bull Mater Sci 40(5):957–969. https://doi.org/10.1007/s12034-017-1438-5

    CAS  Google Scholar 

  76. Wang H, Huang J, Uddin MA, Liu B, Chen P, Shi S, Tang Y, Xing G, Zhang S, Woo HY, Guo H, Guo X (2019). ACS Appl Mater Interfaces 11(10):10089–10098. https://doi.org/10.1021/acsami.8b22457

    CAS  PubMed  Google Scholar 

  77. Radi S, Tighadouini S, Baquet M, Zaghrioui M (2016). J Sulfur Chem 37(3):296–306. https://doi.org/10.1080/17415993.2015.1137920

    CAS  Google Scholar 

  78. Bondarev D, Sivkova R, Suly P, Polásková M, Krejcí O, Krikavová R, Trávnícek Z, Zukal A, Kubu M, Sedlácek J (2017). Eur Polym J 92:213–219. https://doi.org/10.1016/j.eurpolymj.2017.04.042

    CAS  Google Scholar 

  79. Coleone AP, Lascane LG, Batagin-Neto A (2019). Phys Chem Chem Phys 21(32):17729–17739. https://doi.org/10.1039/C9CP02638J

    CAS  PubMed  Google Scholar 

  80. Petit C, Kante K, Bandosz TJ (2010). Carbon 48 (3):654–667. https://doi.org/10.1016/j.carbon.2009.10.007

    CAS  Google Scholar 

  81. Sun S-S, Sariciftci NS (eds) (2005) Organic photovoltaics: mechanisms, materials, and devices, Optical engineering. Taylor & Francis, Boca Raton

  82. Abdou M SA, Orfino FP, Son Y, Holdcroft S (1997). J Am Chem Soc 119(19):4518–4524. https://doi.org/10.1021/ja964229j

    CAS  Google Scholar 

Download references

Funding

This research was supported by the the Brazilian National Council for Scientific and Technological Development (CNPq) (grant numbers 448310/2014-7, 420449/2018-3 and BHB scholarship - PIBIC) and São Paulo Research Foundation (FAPESP) (grant number 2019/09431-0). This research was also supported by resources supplied by the Center for Scientific Computing (NCC/Grid-UNESP) of the São Paulo State University (UNESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Batagin-Neto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Author contributions

All the authors contributed to the conceptualization, formal analyses, investigation, writing—original draft, and writing—review and editing the manuscript. A Batagin-Neto was also responsible for funding acquisition, resources, and supervision.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(6.86 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barboza, B.H., Gomes, O.P. & Batagin-Neto, A. Polythiophene derivatives as chemical sensors: a DFT study on the influence of side groups. J Mol Model 27, 17 (2021). https://doi.org/10.1007/s00894-020-04632-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04632-w

Keywords

Navigation