Skip to main content
Log in

Theoretical study of noncovalent interactions in XCN···YO2H (X = F, Cl, Br, I; Y = P, As, Sb) complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Noncovalent interactions in XCN···YO2H (X = F, Cl, Br, I; Y = P, As, Sb) complexes were investigated using ab initio calculations at the MP2/aug-cc-pVDZ level of theory. There are four different configurations of these complexes, and the complexes are formed via hydrogen bonds, halogen bonds, π-hole interactions, or dual interactions. An examination of binding distances and interaction energies suggested that π-hole bonds are more stable than the other interactions. Molecular electrostatic potentials, electron densities, second-order stabilization energies, and electron density differences were computed to study the character of these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–g
Fig. 2
Fig. 3a–b
Fig. 4a–b

Similar content being viewed by others

References

  1. Müllerdethlefs K, Hobza P (2000) Chem Rev 100:143–168

    Article  Google Scholar 

  2. Rudkevich DM (2004) Angew Chem Int Ed 43:558–571

    Article  CAS  Google Scholar 

  3. Saalfrank RW, Maid H, Scheurer A (2008) Angew Chem Int Ed 47:8794–8824

    Article  CAS  Google Scholar 

  4. Scheiner S (1997) Hydrogen bonding. A theoretical perspective. Oxford University Press, New York

    Google Scholar 

  5. Metrangolo P, Resnati G (eds) (2007) Halogen bonding: fundamentals and applications, structure and bonding. Springer, Berlin

    Google Scholar 

  6. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci USA 101:16789–16794

    Article  CAS  Google Scholar 

  7. Legon AC (2010) Phys Chem Chem Phys 12:7736–7747

    Article  CAS  Google Scholar 

  8. Politzer P, Murray JS (2002) Theor Chem Accounts 108:134–142

    Article  CAS  Google Scholar 

  9. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  10. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  11. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  12. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Comput Theor Chem 998:2–8

    Article  CAS  Google Scholar 

  13. Politzer P, Murray JS (2013) Cryst Eng Comm 15:3145–3150

    Article  CAS  Google Scholar 

  14. Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  15. Bauza A, Mooibroek TJ, Frontera A (2015) Chem Phys Chem 16:2496–2517

    Article  CAS  Google Scholar 

  16. Bauza A, Mooibroek TJ, Frontera A (2013) Angew Chem Int. Ed. 52:12317–12321

    Article  CAS  Google Scholar 

  17. Bauza A, Ramis R, Frontera A (2014) Comput Theor Chem 1038:67–70

    Article  CAS  Google Scholar 

  18. Bundhun A, Ramasami P, Murray JS, Politzer P (2013) J Mol Model 19:2739–2746

    Article  CAS  Google Scholar 

  19. Murray JS, Lane P, Politzer P (2008) Int J Quantum Chem 108:2770–2781

    Article  CAS  Google Scholar 

  20. Murray JS, Clark T, Lane P, Politzer P (2007) J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  21. Wang WZ, Ji BM, Zhang Y (2009) J Phys Chem A 113:8132–8135

    Article  Google Scholar 

  22. Scheiner S (2013) Acc Chem Res 46:280–288

  23. Saparov B, He H, Zhang X, Greene R, Bobev S (2010) Dalton Trans 39:1063–1070

  24. Kilian P, Slawin AM, Woollins JD (2003) Chem Eur J 9:215–222

  25. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) J Mol Model 18:541–548

  26. Wang H, Wang WZ, Jin WJ (2016) Chem Rev 116:5072–5104

  27. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395

  28. Cavallo G, Metrangolo P, Pilati T, Resnati G, Sansotera M, Terraneo G (2010) Chem Soc Rev 39:3772–3783

  29. Lu YX, Shi T, Wang Y, Yang HY, Yan XH, Luo XM, Jiang HL, Zhu WL (2009) J Med Chem 52:2854–2862

  30. Politzer P, Murray JS (2013) Chem Phys Chem 17:278–294

    Article  Google Scholar 

  31. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  32. Cavallo G, Metrangolo P, Milan R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) Chem Rev 116:2478–2601

    Article  CAS  Google Scholar 

  33. Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Chem Eur J 17:6034–6038

    Article  CAS  Google Scholar 

  34. Ganesamoorthy C, Balakrishna MS, Mague JT, Tuononen HM (2008) Inorg Chem 47:7035–7047

    Article  CAS  Google Scholar 

  35. Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J (2011) Angew Chem Int Ed 50:9564–9583

    Article  CAS  Google Scholar 

  36. Egli M, Sarkhel S (2007) Acc Chem Res 40:197–205

    Article  CAS  Google Scholar 

  37. Alkorta I, Elguero J, Del Bene JE (2013) J Phys Chem A 117:10497–10503

    Article  CAS  Google Scholar 

  38. Wang YH, Li XY, Zeng YL, Meng LP, Zhang XY (2016) Acta Phys Chim Sin 32:671–682

  39. Nziko V, Scheiner S (2016) Phys Chem Chem Phys 18:3581–3590

    Article  CAS  Google Scholar 

  40. Azofra LM, Alkorta I, Scheiner S (2014) Theor Chem Accounts 133:1586–1591

    Article  Google Scholar 

  41. Bauza A, Ramis R, Frontera A (2014) J Phys Chem A 118:2827–2834

    Article  CAS  Google Scholar 

  42. Bauza A, Mooibroek TJ, Frontera A (2015) Chem Commun 51:1491–1493

    Article  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09 (revision B.01). Gaussian, Inc., Pittsburgh

  44. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  45. Todd A, Keith TK (2015) AIMAll (version 11.12.19). Gristmill Software, Overland Park. aim.tkgristmill.com

  46. Lu T, Chen FW (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  47. Esrafili MD, Mohammadirad N (2016) Struct Chem 27:939–946

  48. Esrafili MD, Asadollahi S, Dadban Shahamat Y (2016) Struct Chem 27:1439–1447

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful for the help provided by the High-Performance Computing Center in Shandong University and the reasonable advice of Prof. Feng at Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q. Theoretical study of noncovalent interactions in XCN···YO2H (X = F, Cl, Br, I; Y = P, As, Sb) complexes. J Mol Model 23, 188 (2017). https://doi.org/10.1007/s00894-017-3358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3358-0

Keywords

Navigation