Skip to main content
Log in

Noncovalent interactions in dimers and trimers of SO3 and CO

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The SO3:CO heterodimer has been found by ab initio calculations to form a complex in which the C lone pair of CO interacts with the π*(SO) antibond via the π-hole lying directly above the S atom of SO3. The binding energy of this complex is 4.3 kcal/mol, with Coulombic attraction as its main component. There is also a secondary minimum, with half that strength, wherein the CO molecule is rotated so that it is its O atom that interacts with SO3. The most stable SO3:(CO)2 heterotrimer has the two CO molecules approaching the S atom from above and below the SO3 plane with the C atoms of the CO interacting with the S of the SO3. A strong chalcogen bond between SO3 molecules is the dominant feature of the (SO3)2:CO trimer, supplemented by a S···C chalcogen bond in the SO3:CO dimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hobza P, Müller-Dethlefs K (2009) Non-covalent interactions. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Schuster P, Zundel G, Sandorfy C (1976) The hydrogen bond. Recent developments in theory and experiments. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  3. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York

    Google Scholar 

  4. Grabowski SJ (2006) Hydrogen bonding—new insights. Springer, Dordrecht

    Book  Google Scholar 

  5. Gilli G, Gilli P (2009) The nature of the hydrogen bond. Oxford University Press, Oxford

    Book  Google Scholar 

  6. Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) J Am Chem Soc 118:3108–3116

    Article  CAS  Google Scholar 

  7. Metrangolo P, Resnati G (2008) Science 321:918–919

    Article  CAS  Google Scholar 

  8. Zierkiewicz W, Michalska D, Zeegers-Huyskens T (2010) Phys Chem Chem Phys 12:13681–13691

    Article  CAS  Google Scholar 

  9. Adhikari U, Scheiner S (2012) Chem Phys Lett 532:31–35

    Article  CAS  Google Scholar 

  10. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  11. Solimannejad M, Malekani M, Alkorta I (2013) J Phys Chem A 117:5551–5557

    Article  CAS  Google Scholar 

  12. Tschirschwitz S, Lonnecke P, Hey-Hawkins E (2007) Dalton Trans 14:1377–1382

  13. Bühl M, Kilian P, Woollins JD (2011) ChemPhysChem 12:2405–2408

    Article  Google Scholar 

  14. Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2011) Chem Phys Lett 512:184–187

    Article  Google Scholar 

  15. Scheiner S (2011) J Phys Chem A 115:11202–11209

    Article  CAS  Google Scholar 

  16. Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Chem Eur J 17:6034–6038

    Article  CAS  Google Scholar 

  17. Adhikari U, Scheiner S (2012) Chem Phys Lett 536:30–33

    Article  CAS  Google Scholar 

  18. Scheiner S (2012) Acc Chem Res 46:280–288

    Article  Google Scholar 

  19. Alkorta I, Elguero J, Del Bene JE (2013) J Phys Chem A 117:4981–4987

    Article  CAS  Google Scholar 

  20. Azofra LM, Alkorta I, Elguero J (2014) ChemPhysChem. doi:10.1002/cphc.201402086

  21. Alkorta I, Rozas I, Elguero J (2001) J Phys Chem A 105:743–749

    Article  CAS  Google Scholar 

  22. Azofra LM, Altarsha M, Ruiz-López MF, Ingrosso F (2013) Theor Chem Acc 132:1326

    Article  Google Scholar 

  23. Bauzá A, Mooibroek TJ, Frontera A (2013) Angew Chem Int Ed 52:12317–12321

    Article  Google Scholar 

  24. Grabowski SJ (2014) Phys Chem Chem Phys 16:1824–1834

    Article  CAS  Google Scholar 

  25. Minyaev RM, Minkin VI (1998) Can J Chem 76:776–788

    Article  CAS  Google Scholar 

  26. Rosenfield RE, Parthasarathy R, Dunitz JD (1977) J Am Chem Soc 99:4860–4862

    Article  CAS  Google Scholar 

  27. Burling FT, Goldstein BM (1992) J Am Chem Soc 114:2313–2320

    Article  CAS  Google Scholar 

  28. Iwaoka M, Takemoto S, Tomoda S (2002) J Am Chem Soc 124:10613–10620

    Article  CAS  Google Scholar 

  29. Werz DB, Gleiter R, Rominger F (2002) J Am Chem Soc 124:10638–10639

    Article  CAS  Google Scholar 

  30. Bleiholder C, Werz DB, Köppel H, Gleiter R (2006) J Am Chem Soc 128:2666–2674

    Article  CAS  Google Scholar 

  31. Sánchez-Sanz G, Alkorta I, Elguero J (2011) Mol Phys 109:2543–2552

    Article  Google Scholar 

  32. Jabłoński M (2012) J Phys Chem A 116:3753–3764

    Article  Google Scholar 

  33. Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2012) ChemPhysChem 13:496–503

    Article  Google Scholar 

  34. Adhikari U, Scheiner S (2014) J Phys Chem A 118:3183–3192

    Article  CAS  Google Scholar 

  35. Azofra LM, Scheiner S (2014) J Phys Chem A 118:3835–3845

    Article  CAS  Google Scholar 

  36. Azofra LM, Alkorta I, Scheiner S (2014) J Chem Phys 140:244311

    Article  Google Scholar 

  37. Azofra LM, Alkorta I, Scheiner S (2014) Phys Chem Chem Phys 16:18974–18981

    Article  CAS  Google Scholar 

  38. Bauzá A, Alkorta I, Frontera A, Elguero J (2013) J Chem Theory Comput 9:5201–5210

    Article  Google Scholar 

  39. Cavallo G, Metrangolo P, Pilati T, Resnati G, Terraneo G (2014) Cryst Growth Des 14:2697–2702

    Article  CAS  Google Scholar 

  40. Goettel JT, Chaudhary P, Hazendonk P, Mercier HPA, Gerken M (2012) Chem Commun 48:9120–9122

    Article  CAS  Google Scholar 

  41. Murray J, Lane P, Clark T, Riley K, Politzer P (2012) J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  42. Azofra LM, Scheiner S (2014) J Chem Phys 140:034302

    Article  Google Scholar 

  43. Azofra LM, Scheiner S (2014) Phys Chem Chem Phys 16:5142–5149

    Article  CAS  Google Scholar 

  44. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  45. Dunning THJ (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  46. Woon DE, Dunning TH (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  47. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, GAUSSIAN09, Revision D.01, Wallingford CT, 2009

  49. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  50. Werner H-J, Knowles PJ, Manby FR, Schütz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A, MOLPRO 2012.1, 2012

  51. Xantheas SS, Dunning TH (1993) J Chem Phys 99:8774–8792

    Article  CAS  Google Scholar 

  52. Xantheas SS (1994) J Chem Phys 100:7523–7534

    Article  CAS  Google Scholar 

  53. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  54. Popelier PLA (2000) Atoms in molecules. An introduction. Prentice Hall, Harlow

    Google Scholar 

  55. Weinhold F, Landis CR (2005) Valency and bonding. A natural bond orbital donor-acceptor perspective. Cambridge Press, Cambridge

    Book  Google Scholar 

  56. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  57. Keith TA, AIMAll (Version 13.11.04), Overland Park KS, USA, 2013

  58. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F, NBO 6.0, Madison, USA, 2013

  59. Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

  60. Bulat F, Toro-Labbé A, Brinck T, Murray J, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  61. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  62. Chałasiński G, Szczȩśniak MM (2000) Chem Rev 100:4227–4252

    Article  Google Scholar 

  63. Muenter JS (1975) J Mol Spectrosc 55:490–491

  64. Reimers JR, Watts RO, Klein ML (1982) Chem Phys 64:95–114

    Article  CAS  Google Scholar 

  65. Sergeeva AP, Averkiev BB, Zhai H-J, Boldyrev AI, Wang L-S (2011) J Chem Phys 134:224304

    Article  Google Scholar 

  66. van der Pol A, van der Avoird A, Wormer PES (1990) J Chem Phys 92:7498–7504

    Article  Google Scholar 

  67. Brookes MD, McKellar ARW (1999) J Chem Phys 111:7321–7328

    Article  CAS  Google Scholar 

  68. Vissers GWM, Wormer PES, van der Avoird A (2003) Phys Chem Chem Phys 5:4767–4771

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the CTQ2012–35513–C02–02 (MINECO) project. LMA thanks the MICINN for a PhD grant (No. BES–2010–031225). Computer, storage and other resources from the CTI (CSIC) and from the Division of Research Computing in the Office of Research and Graduate Studies at Utah State University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Miguel Azofra.

Additional information

Published as part of the special collection of articles derived from the 9th Congress on Electronic Structure: Principles and Applications (ESPA 2014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azofra, L.M., Alkorta, I. & Scheiner, S. Noncovalent interactions in dimers and trimers of SO3 and CO. Theor Chem Acc 133, 1586 (2014). https://doi.org/10.1007/s00214-014-1586-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1586-2

Keywords

Navigation