Skip to main content
Log in

DFT, QTAIM, and NBO investigations of the ability of the Fe or Ni doped CNT to absorb and sense CO and NO

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structures and intramolecular interactions of complexes (FeCNT-CO, FeCNT-NO, NiCNT-CO, and NiCNT-NO) formed by the Fe or Ni doped single-wall carbon nanotube (FeCNT or NiCNT) and gas CO or NO were studied using density functional theory, quantum theory of atom in molecule (QTAIM), and natural bond orbital methods. The adsorption processes of CO and NO on surfaces of FeCNT and NiCNT are chemisorption, energetically favored, exothermic, and spontaneous. High temperature is not good for adsorption. Introducing NO more obviously elongates the distances between Fe/Ni and C atoms and decreases ∠CFe(Ni)C than adding CO. QTAIM analysis shows that the covalent bonding interactions of FeCNT-NO (NiCNT-NO) are stronger than that of FeCNT-CO (NiCNT-CO). NO plays a role of electron acceptor while CO is electron donator in complexes. Electrostatic interaction of FeCNT-NO (NiCNT-NO) is stronger than that of FeCNT-CO (NiCNT-CO). The stronger intramolecular interactions of FeCNT-NO and NiCNT-NO reveal that FeCNT and NiCNT are more effective to adsorb and sense NO than CO. CO and NO considerably change the electronic properties of FeCNT and NiCNT, which is useful for designing sensors for CO and NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  2. Liu C, Fan Y, Liu M, Cong H, Cheng H, Dresselhaus MS (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286(5442):1127–1129

    Article  CAS  Google Scholar 

  3. Ajayan PM, Zhou OZ (2001) Applications of carbon nanotubes. In: Carbon nanotubes. Springer, pp 391–425

  4. De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539

    Article  Google Scholar 

  5. Kawasaki N, Wang H, Nakanishi R, Hamanaka S, Kitaura R, Shinohara H, Yokoyama T, Yoshikawa H, Awaga K (2011) Nanohybridization of polyoxometalate clusters and single‐wall carbon nanotubes: applications in molecular cluster batteries. Angew Chem 123(15):3533–3536

  6. Li WS, Hou PX, Liu C, Sun DM, Yuan J, Zhao SY, Yin LC, Cong H, Cheng HM (2013) High-quality, highly concentrated semiconducting single-wall carbon nanotubes for use in field effect transistors and biosensors. ACS Nano 7(8):6831–6839

    Article  CAS  Google Scholar 

  7. Zakaria AB, Picaud F, Rattier T, Pudlo M, Saviot L, Chassagnon R, Lherminier J, Gharbi T, Micheau O, Herlem G (2015) Nanovectorization of TRAIL with single wall carbon nanotubes enhances tumor cell killing. Nano Lett 15(2):891–895

    Article  CAS  Google Scholar 

  8. Kim S (2006) CNT sensors for detecting gases with low adsorption energy by ionization. Sensors Basel 6(5):503–513

    Article  CAS  Google Scholar 

  9. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42(24):9005–9013

    Article  CAS  Google Scholar 

  10. Tournus F, Charlier JC (2005) Ab initio study of benzene adsorption on carbon nanotubes. Phys Rev B 71(16):165421

    Article  Google Scholar 

  11. Peng S, Cho K, Qi P, Dai H (2004) Ab initio study of CNT NO2 gas sensor. Chem Phys Lett 387(4):271–276

    Article  CAS  Google Scholar 

  12. Zhu XY, Lee SM, Lee YH, Frauenheim T (2000) Adsorption and desorption of an O2 molecule on carbon nanotubes. Phys Rev Lett 85(13):2757

    Article  CAS  Google Scholar 

  13. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625

    Article  CAS  Google Scholar 

  14. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801–1804

    Article  CAS  Google Scholar 

  15. Kuznetsova A, Yates J Jr, Liu J, Smalley R (2000) Physical adsorption of xenon in open single walled carbon nanotubes: observation of a quasi-one-dimensional confined Xe phase. J Chem Phys 112(21):9590–9598

    Article  CAS  Google Scholar 

  16. Byl O, Kondratyuk P, Forth ST, FitzGerald SA, Chen L, Johnson JK, Yates JT (2003) Adsorption of CF4 on the internal and external surfaces of opened single-walled carbon nanotubes: a vibrational spectroscopy study. J Am Chem Soc 125(19):5889–5896

    Article  CAS  Google Scholar 

  17. Fastow M, Kozirovski Y, Folman M, Heidberg J (1992) IR spectra of carbon monoxide and nitric oxide adsorbed on fullerene (C60). J Phys Chem 96(15):6126–6128

    Article  CAS  Google Scholar 

  18. Ellison MD, Crotty MJ, Koh D, Spray RL, Tate KE (2004) Adsorption of NH3 and NO2 on single-walled carbon nanotubes. J Phys Chem B 108(23):7938–7943

    Article  CAS  Google Scholar 

  19. Zhu Z, Lu G, Smith S (2004) Comparative study of hydrogen storage in Li-and K-doped carbon materials––theoretically revisited. Carbon 42(12):2509–2514

    Article  CAS  Google Scholar 

  20. Du A, Sun C, Zhu Z, Lu G, Rudolph V, Smith SC (2009) The effect of Fe doping on adsorption of CO2/N2 within carbon nanotubes: a density functional theory study with dispersion corrections. Nanotechnology 20(37):375701

    Article  CAS  Google Scholar 

  21. Seenithurai S, Pandyan RK, Kumar SV, Mahendran M (2013) H2 adsorption in Ni and passivated Ni doped 4 Å single walled carbon nanotube. Int J Hydrog Energy 38(18):7376–7381

    Article  CAS  Google Scholar 

  22. Ni MY, Wang XL, Zeng Z (2009) Interaction of hydrogen molecules on Ni-doped single-walled carbon nanotube. Chin Phys B 18(1):357

    Article  CAS  Google Scholar 

  23. Mao Y, Yan X, Xiao Y (2005) First-principles study of transition-metal-doped single-walled carbon nanotubes. Nanotechnology 16(12):3092–3096

    Article  CAS  Google Scholar 

  24. Kobayashi R, Amos RD (2006) The application of CAM-B3LYP to the charge-transfer band problem of the zincbacteriochlorin–bacteriochlorin complex. Chem Phys Lett 420(1):106–109

    Article  CAS  Google Scholar 

  25. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1):51–57

    Article  CAS  Google Scholar 

  26. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80(7):3265–3269

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C02. Gaussian Inc, Wallingford

  28. Lu T, Chen F (2012) Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  29. Cremer D, Kraka E (1984) Chemical bonds without bonding electron density — does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed 23(8):627–628

  30. Pyykkö P, Atsumi M (2009) Molecular single-bond covalent radii for elements 1–118. Chem Eur J 15(1):186–197

  31. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. WILEY-VCH, Weinheim

  32. Peralta-Inga Z, Lane P, Murray JS, Boyd S, Grice ME, O'Connor CJ, Politzer P (2003) Characterization of surface electrostatic potentials of some (5,5) and (n,1) carbon and boron/nitrogen model nanotubes. Nano Lett 3(1):21–28

    Article  CAS  Google Scholar 

  33. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16(11):1679–1691

    Article  CAS  Google Scholar 

  34. Bulat FA, Burgess JS, Matis BR, Baldwin JW, Macaveiu L, Murray JS, Politzer P (2012) Hydrogenation and fluorination of graphene models: analysis via the average local ionization energy. J Phys Chem A 116(33):8644–8652

    Article  CAS  Google Scholar 

  35. Politzer P, Murray JS, Bulat FA (2010) Average local ionization energy: a review. J Mol Model 16(11):1731–1742

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Gong, X. DFT, QTAIM, and NBO investigations of the ability of the Fe or Ni doped CNT to absorb and sense CO and NO. J Mol Model 21, 225 (2015). https://doi.org/10.1007/s00894-015-2778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2778-y

Keywords

Navigation