Skip to main content

Advertisement

Log in

Molecular dynamic simulations reveal the mechanism of binding between xanthine inhibitors and DPP-4

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We apply molecular docking, molecular dynamics (MD) simulation, and binding free energy calculation to investigate and reveal the binding mechanism between five xanthine inhibitors and DPP-4. The electrostatic and van der Waals interactions of the five inhibitors with DPP-4 are analyzed and discussed. The computed binding free energies using MM-PBSA method are in qualitatively agreement with experimental inhibitory potency of five inhibitors. The hydrogen bonds of inhibitors with Ser630 and Asp663 can stabilize the inhibitors in binding sites. The van der Waals interactions, especially the key contacts with His740, Asn710, Trp629, and Tyr666 have larger contributions to the binding free energy and play important roles in distinguishing the variant bioactivity of five inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Feng J, Zhang Z, Michael B (2007) Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. J Med Chem 50:2297–2300

    Article  CAS  Google Scholar 

  2. Wright S, Mark J (2006) cis-2,5-Dicyanopyrrolidine inhibitors of dipeptidyl peptidase IV: synthesis and in vitro, in vivo, and x-ray crystallographic characterization. J Med Chem 49:3068–3076

    Article  CAS  Google Scholar 

  3. Rosenstock J, Schwartz SL, Clark CM Jr, Park GD, Donley DW, Edwards MB (2001) Basal insulin therapy in type 2 diabetes: 28-week comparison of insulin glargine (HOE 901) and NPH insulin. Diabetes Care 24:631–636

    Article  CAS  Google Scholar 

  4. Barnett AH, Owens DR (1997) Insulin analogues. Lancet 349:47–51

    Article  CAS  Google Scholar 

  5. King P, Peacock I, Donnelly R (1999) The UK Prospective Diabetes Study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br J Clin Pharmacol 48:643–648

    Article  CAS  Google Scholar 

  6. UK Prospective Diabetes Study Group (1990) UK prospective diabetes study 7: response of fasting plasma glucose to diet therapy in newly presenting type II diabetic patients. Metabolism 39:905–912

    Article  Google Scholar 

  7. Gerich JE (1989) Oral hypoglycemic agents. N Engl J Med 321:1231–1245

    Article  CAS  Google Scholar 

  8. Lillelund H, Jensen H, Liang X, Bols M (2002) Recent developments of transition-state analogue glycosidase inhibitors of non-natural product origin. Chem Rev 102:515–553

    Article  CAS  Google Scholar 

  9. Berecibar A, Grandjean C, Siriwardena A (1999) Synthesis and biological activity of natural aminocyclopentitol glycosidase inhibitors: mannostatins, trehazolin, allosamidins, and their analogs. Chem Rev 99:779–844

    Article  CAS  Google Scholar 

  10. Jacob S (1995) Glycosylation inhibitors in biology and medicine. Curr Opin Struct Biol 5:605–611

    Article  CAS  Google Scholar 

  11. Saltiel R, Olefsky M (1996) Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 45:1661–1669

    Article  CAS  Google Scholar 

  12. Schoonjans K, Martin G, Staels B, Auwerx J (1997) Peroxisome proliferator-activated receptors, or-phans with ligands and functions. Curr Opin Lipidol 8:159–166

    Article  CAS  Google Scholar 

  13. Pittas G, Greenberg S (2002) Thiazolidinediones in the treatment of type 2 diabetes. Expert Opin Pharmacother 3:529–540

    Article  CAS  Google Scholar 

  14. Rami K, Smith A (2000) Synthetic ligands for PPARç s review of patent literature 1994–1999. Expert Opin Ther Pat 10:623–634

    Article  CAS  Google Scholar 

  15. Van Gaal L, Scheen J (2002) Are all glitazones the same diabetes. Metab Res Rev 18:S1–S4

    Article  Google Scholar 

  16. Hauner H (2002) The mode of action of thiazolidinediones. Diabetes Metab Res Rev 18:S10–S15

    Article  CAS  Google Scholar 

  17. Witters L (2001) The blooming of the French lilac. J Clin Invest 108:1105–1107

    Article  CAS  Google Scholar 

  18. Bailey J, Path C, Turner C (1996) Drug therapy-metformin N. Engl J Med 334:574–579

    Article  CAS  Google Scholar 

  19. Wagman AS, Nuss JM (2001) Current therapies and emerging targets for the treatment of diabetes. Curr Pharm Des 7:417–450

    Article  CAS  Google Scholar 

  20. Deacon CF (2011) Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes:a comparative review. Diabetes Obes Metab 13:7–18

    Article  CAS  Google Scholar 

  21. Drucker DJ (2001) Minireview: the glucagon-like peptides. Endocrinology 142:521–527

    Article  CAS  Google Scholar 

  22. Ross SA, Gulve EA, Wang M (2004) Chemistry and biochemistry of type 2 diabetes. Chem Rev 104:1255–1282

    Article  CAS  Google Scholar 

  23. Bo A (2009) Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov 8:369–385

    Article  Google Scholar 

  24. Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: Glucagon-like peptide I (7–37) co-encoded in the glucagon gene is a potentstimulator of insulin release in the perfused rat pancreas. J Clin Invest 79:616–619

    Article  CAS  Google Scholar 

  25. Kreymann B, Ghatei MA, Williams G, Bloom SR (1987) Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2:1300–1304

    Article  CAS  Google Scholar 

  26. Rskov C, Holst JJ, Nielsen OV (1988) Effect of truncated glucagon-like peptide-1 [proglucagon-(78–107) amide] on endocrine secretionfrom pig pancreas, antrum, and nonantral stomach. Endocrinology 123:2009–2013

    Article  Google Scholar 

  27. Nauck MA, Heimesaat MM, Behle K (2002) Effects of glucagon- like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab 87:1239–1246

    Article  CAS  Google Scholar 

  28. Wettergren A, Schjoldager B, Mortensen PE (1993) Truncated GLP-1 (proglucagon 78–107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 38:665–673

    Article  CAS  Google Scholar 

  29. Nauck MA, Niedereichholz U, Ettler R, Holst JJ, Orskov C, Ritzel R, Schmiegel WH (1997) Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulino-tropic effects in healthy humans. Am J Physiol 273:E981–E988

    CAS  Google Scholar 

  30. Flint A, Raben A, Ersboll AK, Holst JJ, Astrup A (2001) The effect of physiological levels of glucagons-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int J Obes 25:781–792

    Article  CAS  Google Scholar 

  31. Magnin DR, Robl JA (2004) Synthesis of novel potent dipeptidyl peptidase IV inhibitors with enhanced chemical stability: interplay between the N-terminal amino acid alkyl side chain and the cyclopropyl group of α-aminoacyl-L-cis-4,5-methanoprolinenitrile-based inhibitors. J Med Chem 47:2587–2598

    Article  CAS  Google Scholar 

  32. Hiramatsu H, Yamamoto A, Kyono K (2004) The crystal structure of human dipeptidyl peptidase IV(DPPIV) complex with diprotin. A Biol Chem 385(6):561–564

    CAS  Google Scholar 

  33. Lambei AM, Seharpe, DeMeester (2008) DPP-4 inhibitors for diabetes- what next. Biochem Pharmacol 76(12):1637–1643

    Article  Google Scholar 

  34. Mentlein R, Gallwitzand B, Schmidt WE (1993) Dipeptidyl-peptidlase IV hydrolyses gastric inhibitory polypeptide, glueagon- like PePtide- l (7–36) amide peptide histidine methionine and 15 responsible for their degradation in human serum. EurJBioehem 214(3):829–835

    Article  CAS  Google Scholar 

  35. Chien C-H, Tsai C-H, Lin C-H (2006) Identification of hydrophobic residues critical for DPP-IV dimerization. Biochemistry 45(23):7006–7012

    Article  CAS  Google Scholar 

  36. Hansen L, Deacon CF, Orskov C, Holst JJ (1999) Glucagon- like peptide-1 (7–36) amide is transformed to glucagon-like peptide-1 (9–36) amide by dipeptidyl peptidase IV in the capillaries supplying the L-cells of the porcine intestine. Endocrinology 140:5356–5363

    CAS  Google Scholar 

  37. Kieffer TJ, McIntosh CHS, Pederson RA (1995) Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like Pep- tide-1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136:3585–3597

    CAS  Google Scholar 

  38. Gwaltney SL, Stafford JA (2005) Inhibitors of dipeptidyl peptidase. Annu Rep Med Chem 40:149–165

    Article  CAS  Google Scholar 

  39. Hiramatsu H, Yamamoto A, Kyono K (2004) The crystal structure of human dipeptidyl peptidase IV(DPPIV) complex with diprotin A. Biol Chem 385:561–564

    Article  CAS  Google Scholar 

  40. Chien C-H, Tsai C-H, Lin C-H (2006) Identification of hydrophobic residues critical for DPP-IV dimerization. Biochemistry 45:7006–7012

    Article  CAS  Google Scholar 

  41. Engel M, Hoffmann T, Manhart S (2006) Rigidity and flexibility of dipeptidyl peptidase IV: crystal structures of and docking experiments with DPIV. J Mol Biol 355:768–783

    Article  CAS  Google Scholar 

  42. Barnett A (2006) DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int J Clin Pract 60:1454–1470

    Article  CAS  Google Scholar 

  43. Eckhardt M, Langkopf E, Mark M (2007) 8-(3-(R)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes. J Med Chem 50:6450–6453

    Article  CAS  Google Scholar 

  44. Li C, Weiqiang L, Chunhua L (2012) Identification of diverse dipeptidyl peptidase IV inhibitors via structure-based virtual screening. J Mol Model 18:4033–4042

    Article  CAS  Google Scholar 

  45. Li C, Shen J, Li W (2011) Possible ligand release pathway of dipeptidyl peptidase IV investigated by molecular dynamics simulations. Wiley-Liss Inc 79:1800–1809

    CAS  Google Scholar 

  46. Pradip Jadav, Rajesh Bahekar, Shailesh R. Shah (2012) Long-acting peptidomimetics based DPP-IV inhibitors. Bioorg Med Chem Lett

  47. Janey J, Hsiao Y, Joseph Armstrong III (2006) Proline-catalyzed, asymmetric mannich reactions in the synthesis of a DPP-IV inhibitor. J Org Chem 71:390–392

    Article  CAS  Google Scholar 

  48. Green BD, Flatt PR, Bailey CJ (2006) Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes. Vasc Dis Res 3:159–165

    Article  Google Scholar 

  49. Gue Hao, Yanzheng Cai, Weicheng Zhou (2009) Progress in the research of dipeptidyl peptidase-4 inhibitors. World Clinical Drugs 30 NO.8

  50. Liang D, Gao J, Cheng Y, Cui W, Zhang H, Ji M (2011) Molecular dynamics simulations and MM/GBSA methods to investigate binding mechanisms of amino methyl pyrimidine inhibitors with DPP-IV. Bioorg Med Chem Lett 21:6630–6635

    Article  CAS  Google Scholar 

  51. Wei C, Desheng L, Jian G, Fang L, Lingling G, Mingjuan J (2013) Molecular dynamics and free energy studies of chirality specificity effects on aminobenzo[a]quinolizine inhibitors binding to DPP-IV. J Mol Model 19:1167–1177

    Article  Google Scholar 

  52. Otyepka M, Skopalík J (2007) What common structural features and variations of mammalian P450s are known to date? Biochim Biophys Acta 1770:376–389

    Article  CAS  Google Scholar 

  53. Vincent BC, Tan BZ, Lim KM, Tay TE (2010) Explaining the inhibition of cyclin-dependent kinase 5 by peptides derived from p25 with molecular dynamics simulations and MM-PBSA. J Mol Model 16:1–8

    Article  Google Scholar 

  54. Chen Q, Cui W, Ji M (2009) Studies of chirality effect of 4-(phenylamino)-pyrrolo[2,1-f] [1,2,4]triazine on p38a by molecular dynamics simulations and free energy calculations. J Comput Aided Mol Des 23:737–745

    Article  Google Scholar 

  55. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision.A.02. Gaussian Inc, Wallingford, CT

  56. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithnm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  57. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304

    Article  CAS  Google Scholar 

  58. Case DA, Cheatham TA, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvary I, Wong KF, Paesani F, Vanicek J, Wu X, Bronzell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER 10. University of California, San Francisco, CA

  59. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for determining atom-centered charges: the RESP model. J Phys Chem 97:10269–11028

    Article  CAS  Google Scholar 

  60. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  61. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general Amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  62. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  63. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  64. Darden T, York D, Pedersen L (1998) Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  Google Scholar 

  65. Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA, and Phosphoramidate-DNA Helices. J Am Chem Soc 120:9401–9409

    Article  CAS  Google Scholar 

  66. Saíz-Urra L, Cabrera MA, Froeyen M (2011) Exploring the conformational changes of the ATP binding site of gyrase B from Escherichia colicomplexed with different established inhibitors by using molecular dynamics simulation: Protein – ligand interactions in the light of the alanine scanning and free energy decomposition methods. J Mol Graph Model 29:726–739

    Article  Google Scholar 

  67. El-Barghouthi MI, Jaime C, Al-Sakhen NA, Issa AA, Abdoh AA, Omari MM, Badwan AA, Zughul MB (2008) Molecular dynamics simulations and MM—PBSA calculations of the cyclodextrin inclusion complexes with 1-alkanols, para-substituted phenols and substituted imidazoles. J Mol Struct THEOCHEM 853:45–52

    Google Scholar 

  68. Cong XJ, Tan JJ, Liu M, Chen W, Wang CX (2010) Computational study of binding mode for N-substituted pyrrole derivatives to HIV-1 gp41. Prog Biochem Biophys 37(8):904–91566

    Article  CAS  Google Scholar 

  69. Andricioaei I, Karplus M (2001) On the calculation of entropy from covariance matrices of the atomic fluctuations. J Chem Phys 115:6289–6292

    Article  CAS  Google Scholar 

  70. Lobanov MY, Bogatyreva NS, Galzitskaya OV (2008) Radius of gyration as an indicator of protein structure compactness. Mol Biol 42:623–628

    Article  CAS  Google Scholar 

  71. Vivier I, Marguet D, Naquet P, Bonicel J, Black D, Li CXY, Bernard AM, Gorvel JP, Pierres M (1991) Evidence that thymocyte-activating molecule is mouse cd26 (dipeptidyl peptidase-iv). J Immunol 147:447–454

    CAS  Google Scholar 

  72. Tanaka S, Murakami T, Horikawa H, Sugiura M, Kawashima K, Sugita T (1997) Suppression of arthritis by the inhibitors of dipeptidyl peptidase IV Int. J Immunopharmacol 19:15–24

    Article  CAS  Google Scholar 

  73. Bristol LA, Sakaguchi K, Appella E, Doyle D, Taka’cs L (1992) Thymocyte costimulating antigen is CD26 (Dipeptidyl peptidase-IV)–costimulation of granulocyte, macrophage, and T-lineageceli-proliferation via CD26. J Immunol 149:367–372

    CAS  Google Scholar 

  74. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPOLT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134

    Article  CAS  Google Scholar 

  75. Hu GD, Zhu T, Zhang SL, Wang D, Zhang QG (2010) Some insights into mechanism for binding and drug resistance of wild type and I50V V82A and I84V mutations in HIV-1 protease with GRL-98065 inhibitor from molecular dynamic simulations. Eur J Med Chem 45:227–235

    Article  CAS  Google Scholar 

  76. Wu EL, Han K, Zhang JZ (2008) Selectivity of neutral/weakly basic P1 group inhibitors of thrombin and trypsin by a molecular dynamics study. Chem Eur J 14:8704–8714

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the National Science Foundation of China (Nos. 21276122, 21136001, and 20876073) and State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology of China (No. ZK201212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. SI-1

(DOC 153 kb)

Fig. SI-2

(DOC 1286 kb)

Fig. SI-3

(DOC 56 kb)

Fig. SI-4

(DOC 159 kb)

Fig. SI-5

(DOC 135 kb)

Fig. SI-6

(DOC 903 kb)

Fig. SI-7

(DOC 139 kb)

Table SI-1

(DOC 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Y., Wang, W., Zhu, X. et al. Molecular dynamic simulations reveal the mechanism of binding between xanthine inhibitors and DPP-4. J Mol Model 20, 2075 (2014). https://doi.org/10.1007/s00894-014-2075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2075-1

Keywords

Navigation