Skip to main content
Log in

Calculation of Free Energy of Binding for Widely Specific Pyrimidine-Nucleoside Phosphorylase and Suspected Inhibitors

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Searching for a specific inhibitor of pyrimidine nucleoside phosphorylase (PyNP) was a central objective of the work. The search was carried out by modeling protein–ligand complexes via molecular docking and molecular dynamics (MD), which make it possible to calculate the protein–ligand binding energy ΔGbind. The following compounds were selected as possible inhibitors: 2',3'-didehydro-3'-deoxythymidine (d4T), 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-5-ioduracil (fiauridine, FIAU), 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-5-uracil (FAU), and 2-pyrimidin-2-yl-1H-imidazole-4-carboxylic acid (PIA). A preliminary estimate of the binding energy was obtained by the linear interaction energy (LIE) method, and a more accurate calculation was carried out by the free energy perturbation (FEP) method in the GROMACS software package. The calculation results showed that PIA and d4T bind to the active site of Bacillus subtilis PyNP (BsPyNP) with higher affinities as compared with the other putative inhibitors. PIA binds less strongly to human thymidine phosphorylase (hTP). This was assumed to minimize the possible side effects of this compound used for therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Friedkin, M. and Roberts, D., J. Biol. Chem., 1954, vol. 207, pp. 245–256.

    Article  CAS  Google Scholar 

  2. Liekens, S., Bronckaers, A., and Balzarini, J., Lancet Oncol., 2009, vol. 10, pp. 628–635. https://doi.org/10.1016/s1470-2045(09)70037-3

    Article  CAS  Google Scholar 

  3. Bronckaers, A., Balzarini, J., and Liekens, S., Biochem. Pharmacol., 2008, vol. 76, pp. 188–197. https://doi.org/10.1016/j.bcp.2008.04.019

    Article  CAS  Google Scholar 

  4. Vande Voorde, J., Gago, F., Vrancken, K., Liekens, S., and Balzarini, J., Biochem. J., 2012, vol. 445, pp. 113–123. https://doi.org/10.1042/bj20112225

    Article  CAS  Google Scholar 

  5. Balaev, V.V., Prokofev, I.I., Gabdoulkhakov, A.G., Betzel, C., and Lashkov, A.A., Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2018, vol. 74, pp. 193–197. https://doi.org/10.1107/s2053230x18002935

    Article  CAS  Google Scholar 

  6. Van Rompay, A.R., Johansson, M., and Karlsson, A., Pharmacol. Ther., 2003, vol. 100, pp. 119–139. https://doi.org/10.1016/j.pharmthera.2003.07.001

    Article  CAS  Google Scholar 

  7. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug Deliv. Rev., 2001, vol. 46, pp. 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0

    Article  CAS  Google Scholar 

  8. Balaev, V.V., Lashkov, A.A., Prokofev, I.I., Gabdulkhakov, A.G., Seregina, T.A., Mironov, A.S., Betzel, C., and Mikhailov, A.M., Crystallogr. Rep., 2016, vol. 61, pp. 830–841. https://doi.org/10.1134/S1063774516050023

    Article  CAS  Google Scholar 

  9. Korb, O., Stützle, T., and Exner, T.E., Swarm Intell., 2007, vol. 1, pp. 115–134. https://doi.org/10.1007/s11721-007-0006-9

    Article  Google Scholar 

  10. Goodsell, D.S. and Olson, A.J., Proteins, 1990, vol. 8, pp. 195–202. https://doi.org/10.1002/prot.340080302

    Article  CAS  Google Scholar 

  11. Korb, O., Stützle, T., and Exner, T.E., J. Chem. Inf. Model, 2009, vol. 49, pp. 84–96. https://doi.org/10.1021/ci800298z

    Article  CAS  Google Scholar 

  12. Metropolis, N. and Ulam, S., J. Am. Stat. Assoc., 1949, vol. 44, pp. 335–341. https://doi.org/10.1080/01621459.1949.10483310

    Article  CAS  Google Scholar 

  13. Dorigo, M., Maniezzo, V., and Colorni, A., IEEE Trans. Syst. Man Cybern. B Cybern., 1996, vol. 26, pp. 29–41. https://doi.org/10.1109/3477.484436

    Article  CAS  Google Scholar 

  14. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berendsen, H.J.C., J. Comput. Chem., 2005, vol. 26, pp. 1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  Google Scholar 

  15. Jo, S., Kim, T., Iyer, V.G., and Im, W., J. Comput. Chem., 2008, vol. 29, pp. 1859–1865. https://doi.org/10.1002/jcc.20945

    Article  CAS  Google Scholar 

  16. MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiórkiewicz-Kuczera, J., Yin, D., and Karplus, M., J. Phys. Chem. B., 1998, vol. 102, pp. 3586–3616. https://doi.org/10.1021/jp973084f

    Article  CAS  Google Scholar 

  17. Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B.L., Grubmüller, H., and MacKerell, A.D. Jr., Nat. Methods, 2017, vol. 14, pp. 71–73. https://doi.org/10.1038/nmeth.4067

    Article  CAS  Google Scholar 

  18. Petersen, H.G., J. Chem. Phys., 1995, vol. 103, pp. 3668–3679. https://doi.org/10.1063/1.470043

    Article  CAS  Google Scholar 

  19. Parrinello, M. and Rahman, A., J. Appl. Physics, 1981, vol. 52, pp. 7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  20. Bussi, G. and Parrinello, M., Computer Physics Comm., 2008, vol. 179, pp. 26–29. https://doi.org/10.1016/j.cpc.2008.01.006

    Article  CAS  Google Scholar 

  21. Hansson, T., Marelius, J., and Åqvist, J., J. Comput. Aided Mol. Des., 1998, vol. 12, pp. 27–35. https://doi.org/10.1023/a:1007930623000

    Article  CAS  Google Scholar 

  22. Aldeghi, M., Heifetz, A., Bodkin, M.J., Knapp, S., and Biggin, P.C., Chem. Sci., 2016, vol. 7, pp. 207–218. https://doi.org/10.1039/c5sc02678d

    Article  CAS  Google Scholar 

  23. Lashkov, A.A., Tolmachev, I.V., Eistrikh-Heller, P.A., and Rubinsky, S.V., Crystallogr. Rep., vol. 66, pp. 861–865. https://doi.org/10.1134/S1063774521050126

  24. Rocklin, G.J., Mobley, D.L., Dill, K.A., and Hunenberger, P.H., J. Chem. Phys., 2013, vol. 139, p. 184103. https://doi.org/10.1063/1.4826261

    Article  CAS  Google Scholar 

  25. Boresch, S., Tettinger, F., Leitgeb, M., and Karplus, M., J. Phys. Chem. B, vol. 107, pp. 9535–9551. https://doi.org/10.1021/jp0217839

  26. Wennberg, C.L., Murtola, T., Pall, S., Abraham, M.J., Hess, B., and Lindahl, E., J. Chem. Theory Comput., 2015, vol. 11, pp. 5737–5746. https://doi.org/10.1021/acs.jctc.5b00726

    Article  CAS  Google Scholar 

  27. Abraham, M.J., Murtola, T., Schulz, R., Pall, S., Smith, J.C., Hess, B., and Lindahl, E., SoftwareX, 2015, vol. 1, pp. 19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  28. Shirts, M.R. and Chodera, J.D., J. Chem. Phys., 2008, vol. 129, p. 124105. https://doi.org/10.1063/1.2978177

    Article  CAS  Google Scholar 

  29. Zwanzig, R.W., J. Chem. Phys., 1954, vol. 22, pp. 1420–1426.

    Article  CAS  Google Scholar 

  30. Jurrus, E., Engel, D., Star, K., Monson, K., Brandi, J., Felberg, L.E., Brookes, D.H., Wilson, L., Chen, J., Liles, K., Chun, M., Li, P., Gohara, D.W., Dolinsky, T., Konecny, R., Koes, D.R., Nielsen, J.E., Head-Gordon, T., Geng, W., Krasny, R., Wei, G., Holst, M.J., McCammon, J.A., and Baker, N.A., Protein Sci., 2018, vol. 27, pp. 112–128. https://doi.org/10.1002/pro.3280

    Article  CAS  Google Scholar 

  31. Balaev, V.V., Prokofev, I.I., Gabdoulkhakov, A.G., Betzel, C., and Lashkov, A.A., X-ray Structure of the Complex Pyrimidine-Nucleoside Phosphorylase from Bacillus subtilis at 1.88 Å. Worldwide Protein Data Bank, 2018.

    Google Scholar 

  32. Kandil, S., Pannecouque, C., Chapman, F.M., Westwell, A.D., and McGuigan, C., Bioorg. Med. Chem. Lett., 2019, vol. 29, p. 126721. https://doi.org/10.1016/j.bmcl.2019.126721

    Article  CAS  Google Scholar 

  33. Institute of Medicine, Committee to Review the Fialuridine (FIAU/FIAC) Clinical Trials., Review of the Fialuridine (FIAU) Clinical Trials. National Academies Press, 1995, p. 280.

    Google Scholar 

  34. Kirkwood, J.G., J. Chem. Phys. Am. Inst. Phys., 1935, vol. 3, no. 5, pp. 300–313.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using the infrastructure of the High-Throughput Calculations and Big Data Collective Access Center (Informatika Center, Informatics and Management Federal Research Center, Russian Academy of Sciences, Moscow). Regulations of the Informatika Center are available at http://www.frccsc.ru/ckp.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-29-12054, calculations by the FEP method) and the Ministry of Science and Higher Education (state contract with the Crystallography and Photonics Federal Research Center, molecular docking and MD simulations).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Eistrikh-Heller.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: AD, Autodock; BsPyNP, Bacillus subtilis pyrimidine-nucleoside phosphorylase; d4T, 2',3'- didehydro-3'-deoxythymidine; FAU, 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-5-uracil; FEP, free energy perturbation; FIAU, fiauridine (1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-5-ioduracil); ΔGbind, protein–ligand binding energy; ΔGcoul, free energy of coupling the Coulomb interaction; ΔGvdw, free energy of coupling the van der Waals interaction defined as the Lennard-Jones potential; ΔΔGDSF, discrete bound finite-size solvent correction; ΔΔGNET, correction for net charge interaction due to periodicity; ΔGrest, restrained binding free energy; ΔΔGRIP, correction for residual integrated potential effects; ΔΔGUSV, correction for under solvation due to periodicity; hTP, human thymidine phosphorylase; LIE, linear interaction energy; MhPyNP, Mycoplasma hyorhinis pyrimidine-nucleoside phosphorylase; PIA, 2-pyrimidin-2-yl-1H-imidazole-4-carboxylic acid; PL, PLANTS; PME, particle mesh Ewald; PyNP, pyrimidine-nucleoside phosphorylase; RMSD, root-mean-square deviation; TI, thermodynamic integration; MD, molecular dynamics

Corresponding author: phone: +7 (916) 875-27-80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eistrikh-Heller, P.A., Rubinsky, S.V., Samygina, V.R. et al. Calculation of Free Energy of Binding for Widely Specific Pyrimidine-Nucleoside Phosphorylase and Suspected Inhibitors. Russ J Bioorg Chem 48, 1262–1272 (2022). https://doi.org/10.1134/S1068162022060103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022060103

Keywords:

Navigation