Skip to main content
Log in

Identification of diverse dipeptidyl peptidase IV inhibitors via structure-based virtual screening

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Dipeptidyl peptidase IV (DPP4) is an important target for the treatment of type II diabetes mellitus. Inhibition of DPP4 will improve glycemic control in such patients by preventing the rapid breakdown and thereby prolonging the physiological actions of incretin hormones. Known DPP4 inhibitors (including marketed drugs and those drug candidates) appear to share similar structural features: the cyanopyrrolidine moieties, the xanthenes/pyrimidine parts and amino-like linkages. In this study, a multi-step virtual screening strategy including both rigid and flexible docking was employed to search for novel structures with DPP4 inhibition. From SPECS database, consisting of over 190,000 commercially available compounds, 99 virtual hits were picked up and 15 of them were eventually identified to have DPP4 inhibitory activities at 5 ~ 50 μM. Diverse structures of our compounds were out of usual structural categories. Hence a pharmacophore model was built to further explore their common binding features on the enzyme. The results provided a new pathway for the discovery of DPP4 inhibitors and would be helpful for further optimization of DPP4 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim D, Kowalchick JE, Brockunier LL, Parmee ER, Eiermann GJ, Fisher MH, He H, Leiting B, Lyons K, Scapin G, Patel SB, Petrov A, Pryor KD, Roy RS, Wu JK, Zhang X, Wyvratt MJ, Zhang BB, Zhu L, Thornberry NA, Weber AE (2008) Discovery of potent and selective dipeptidyl peptidase IV inhibitors derived from beta-aminoamides bearing subsituted triazolopiperazines. J Med Chem 51:589–602

    Article  CAS  Google Scholar 

  2. Edmondson SD, Mastracchio A, Mathvink RJ, He J, Harper B, Park YJ, Beconi M, Di Salvo J, Eiermann GJ, He H, Leiting B, Leone JF, Levorse DA, Lyons K, Patel RA, Patel SB, Petrov A, Scapin G, Shang J, Roy RS, Smith A, Wu JK, Xu S, Zhu B, Thornberry NA, Weber AE (2006) (2S,3S)-3-Amino-4-(3,3-difluoropyrrolidin-1-yl)-N, N-dimethyl-4-oxo-2-(4-[1,2,4]triazolo[1,5-a]-pyridin-6-ylphenyl)butanamide: a selective alpha-amino amide dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 49:3614–3627

    Article  CAS  Google Scholar 

  3. Kieffer TJ, McIntosh CH, Pederson RA (1995) Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136:3585–3596

    Article  CAS  Google Scholar 

  4. Mentlein R, Gallwitz B, Schmidt WE (1993) Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 214:829–835

    Article  CAS  Google Scholar 

  5. Pratley RE, Salsali A (2007) Inhibition of DPP-4: a new therapeutic approach for the treatment of type 2 diabetes. Curr Med Res Opin 23:919–931

    Article  CAS  Google Scholar 

  6. Balkan B, Kwasnik L, Miserendino R, Holst JJ, Li X (1999) Inhibition of dipeptidyl peptidase IV with NVP-DPP728 increases plasma GLP-1 (7–36 amide) concentrations and improves oral glucose tolerance in obese Zucker rats. Diabetologia 42:1324–1331

    Article  CAS  Google Scholar 

  7. Reimer MK, Holst JJ, Ahren B (2002) Long-term inhibition of dipeptidyl peptidase IV improves glucose tolerance and preserves islet function in mice. Europ J Endocrinol 146:717–727

    Article  CAS  Google Scholar 

  8. Thornberry NA, Gallwitz B (2009) Mechanism of action of inhibitors of dipeptidyl-peptidase-4 (DPP-4). Best Pract Res Clin Endocrinol Metabol 23:479–486

    Article  CAS  Google Scholar 

  9. Deacon CF (2007) Dipeptidyl peptidase 4 inhibition with sitagliptin: a new therapy for type 2 diabetes. Expert Opin Invest Drugs 16:533–545

    Article  CAS  Google Scholar 

  10. Kim D, Wang L, Beconi M, Eiermann GJ, Fisher MH, He H, Hickey GJ, Kowalchick JE, Leiting B, Lyons K, Marsilio F, McCann ME, Patel RA, Petrov A, Scapin G, Patel SB, Roy RS, Wu JK, Wyvratt MJ, Zhang BB, Zhu L, Thornberry NA, Weber AE (2005) (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin −7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 48:141–151

    Article  CAS  Google Scholar 

  11. Tsai TY, Hsu T, Chen CT, Cheng JH, Chiou MC, Huang CH, Tseng YJ, Yeh TK, Huang CY, Yeh KC, Huang YW, Wu SH, Wang MH, Chen X, Chao YS, Jiaang WT (2009) Rational design and synthesis of potent and long-lasting glutamic acid-based dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 19:1908–1912

    Article  CAS  Google Scholar 

  12. Villhauer EB, Brinkman JA, Naderi GB, Burkey BF, Dunning BE, Prasad K, Mangold BL, Russell ME, Hughes TE (2003) 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J Med Chem 46:2774–2789

    Article  CAS  Google Scholar 

  13. Green BD, Flatt PR, Bailey CJ (2006) Dipeptidyl peptidase IV (DPP IV) inhibitors: A newly emerging drug class for the treatment of type 2 diabetes. Diab Vasc Dis Res 3:159–165

    Article  Google Scholar 

  14. Augeri DJ, Robl JA, Betebenner DA, Magnin DR, Khanna A, Robertson JG, Wang A, Simpkins LM, Taunk P, Huang Q, Han SP, Abboa-Offei B, Cap M, Xin L, Tao L, Tozzo E, Welzel GE, Egan DM, Marcinkeviciene J, Chang SY, Biller SA, Kirby MS, Parker RA, Hamann LG (2005) Discovery and preclinical profile of Saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 48:5025–5037

    Article  CAS  Google Scholar 

  15. Feng J, Zhang Z, Wallace MB, Stafford JA, Kaldor SW, Kassel DB, Navre M, Shi L, Skene RJ, Asakawa T, Takeuchi K, Xu R, Webb DR, Gwaltney SL 2nd (2007) Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. J Med Chem 50:2297–2300

    Article  CAS  Google Scholar 

  16. Scheen AJ (2010) Pharmacokinetics of dipeptidylpeptidase-4 inhibitors. Diabetes Obes Metab 12:648–658

    Article  CAS  Google Scholar 

  17. Vaghasiya J, Sheth N, Bhalodia Y, Manek R (2011) Sitagliptin protects renal ischemia reperfusion induced renal damage in diabetes. Regul Pept 166:48–54

    Article  CAS  Google Scholar 

  18. Thomas L, Eckhardt M, Langkopf E, Tadayyon M, Himmelsbach F, Mark M (2008) (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazoli n-2-ylmethyl)-3,7-dihydro-purine-2,6-dione (BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor, has a superior potency and longer duration of action compared with other dipeptidyl peptidase-4 inhibitors. J Pharmacol Exp Ther 325:175–182

    Article  CAS  Google Scholar 

  19. Abbott CA, McCaughan GW, Gorrell MD (1999) Two highly conserved glutamic acid residues in the predicted beta propeller domain of dipeptidyl peptidase IV are required for its enzyme activity. FEBS Lett 458:278–284

    Article  CAS  Google Scholar 

  20. Bjelke JR, Christensen J, Branner S, Wagtmann N, Olsen C, Kanstrup AB, Rasmussen HB (2004) Tyrosine 547 constitutes an essential part of the catalytic mechanism of dipeptidyl peptidase IV. J Biol Chem 279:34691–34697

    Article  CAS  Google Scholar 

  21. Ogata S, Misumi Y, Tsuji E, Takami N, Oda K, Ikehara Y (1992) Identification of the active site residues in dipeptidyl peptidase IV by affinity labeling and site-directed mutagenesis. Biochemistry 31:2582–2587

    Article  CAS  Google Scholar 

  22. Weber AE (2004) Dipeptidyl peptidase IV inhibitors for the treatment of diabetes. J Med Chem 47:4135–4141

    Article  CAS  Google Scholar 

  23. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev 23:3–25

    Article  CAS  Google Scholar 

  24. Schrödinger LLC (2006) Schrödinger suite 2008, Glide version 5.0, Protein preparation wizard, Ligprep version 2.2, Induced Fit Docking Protocol, Prime version 2.0. Schrödinger LLC, New York

  25. Biftu T, Scapin G, Singh S, Feng D, Becker JW, Eiermann G, He H, Lyons K, Patel S, Petrov A, Sinha-Roy R, Zhang B, Wu J, Zhang X, Doss GA, Thornberry NA, Weber AE (2007) Rational design of a novel, potent, and orally bioavailable cyclohexylamine DPP-4 inhibitor by application of molecular modeling and X-ray crystallography of sitagliptin. Bioorg Med Chem Lett 17:3384–3387

    Article  CAS  Google Scholar 

  26. Biftu T, Feng D, Qian X, Liang GB, Kieczykowski G, Eiermann G, He H, Leiting B, Lyons K, Petrov A, Sinha-Roy R, Zhang B, Scapin G, Patel S, Gao YD, Singh S, Wu J, Zhang X, Thornberry NA, Weber AE (2007) (3R)-4-[(3R)-3-Amino-4-(2,4,5-trifluorophenyl)butanoyl]-3-(2,2,2-trifluoro ethyl)-1,4-diazepan-2-one, a selective dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg Med Chem Lett 17:49–52

    Article  CAS  Google Scholar 

  27. Chen P, Caldwell CG, Mathvink RJ, Leiting B, Marsilio F, Patel RA, Wu JK, He H, Lyons KA, Thornberry NA, Weber AE (2007) Imidazopiperidine amides as dipeptidyl peptidase IV inhibitors for the treatment of diabetes. Bioorg Med Chem Lett 17:5853–5857

    Article  CAS  Google Scholar 

  28. Kaelin DE, Smenton AL, Eiermann GJ, He H, Leiting B, Lyons KA, Patel RA, Patel SB, Petrov A, Scapin G, Wu JK, Thornberry NA, Weber AE, Duffy JL (2007) 4-arylcyclohexylalanine analogs as potent, selective, and orally active inhibitors of dipeptidyl peptidase IV. Bioorg Med Chem Lett 17:5806–5811

    Article  CAS  Google Scholar 

  29. MDL Information System Inc (2000) ISIS/BASE. MDL Information System Inc, San Leandro

  30. SPECS (2008) http://www.specs.net

  31. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated Docking Using a LamarckianGenetic Algorithm and an EmpiricalBinding Free Energy Function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  32. Accelrys Software Inc (2005) Catalyst User Guide version 4.10. Accelrys Software Inc, San Diego

  33. Accelrys Software Inc (2004) Discovery Studio Modeling Environment version 2.1 (2004) Accelrys Software Inc, San Diego

  34. Kowalchick JE, Leiting B, Pryor KD, Marsilio F, Wu JK, He H, Lyons KA, Eiermann GJ, Petrov A, Scapin G, Patel PA, Thornberry NA, Weber NA, Kim D (2007) Synthesis, and biological evaluation of triazolopiperazine-based b-amino amides as potent, orally active dipeptidyl peptidase IV (DPP-4) inhibitors. Bioorg Med Chem Lett 17:5934–5939

    Article  CAS  Google Scholar 

  35. Biftu T, Feng D, Qian X, Liang GB, Kieczykowski G, Eiermann G, He H, Leiting B, Lyons K, Petrov A, Sinha-Roy R, Zhang B, Scapin G, Patel S, Gao YD, Singh S, Wu J, Zhang X, Thornberryc NA, Weber AE (2007) (3R)-4-[(3R)-3-Amino-4-(2,4,5-trifluorophenyl)butanoyl]-3-(2,2,2-trifluoroethyl)-1,4-diazepan-2-one, a selective dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg Med Chem Lett 17:49–52

    Article  CAS  Google Scholar 

  36. Liang GB, Qian X, Biftu T, Singh S, Gao YD, Scapin G, Patel S, Leiting B, Patel R, Wu J, Zhang X, Thornberry NA, Weber AE (2008) Discovery of new binding elements in DPP-4 inhibition and their applications in novel DPP-4 inhibitor design. Bioorg Med Chem Lett 18:3706–3710

    Article  CAS  Google Scholar 

  37. Nordhoff S, Cerezo-Gálvez S, Deppe H, Hill O, López-Canet M, Rummey C, Thiemann M, Matassa VG, Edwards PJ, Feurer A (2009) Discovery of b-homophenylalanine based pyrrolidin-2-ylmethyl amides and sulfonamides as highly potent and selective inhibitors of dipeptidyl peptidase IV. Bioorg Med Chem Lett 19:4201–4203

    Article  CAS  Google Scholar 

  38. Ammirati MJ, Andrews KM, Boyer DD, Brodeur AM, Danley DE, Doran SD, Hulin B, Liu S, McPherson RK, Orena SJ, Parker JC, Polivkova J, Qiu X, Soglia CB, Treadway JL, VanVolkenburg MA, Wilder DC, Piotrowski DW (2009) (3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone: A potent, selective, orally active dipeptidyl peptidase IV inhibitor. Bioorg Med Chem Lett 19:1991–1995

    Article  CAS  Google Scholar 

  39. Nordhoff S, Bulat S, Cerezo-Gálvez S, Hill O, Hoffmann-Enger B, López-Canet M, Rosenbaum C, Rummey C, Thiemann M, Matassa VG, Edwards PJ, Feurer A (2009) The design of potent and selective inhibitors of DPP-4: Optimization of ADME properties by amide replacements. Bioorg Med Chem Lett 19:6340–6345

    Article  CAS  Google Scholar 

  40. Zhang Z, Wallace MB, Feng J, Stafford JA, Skene RJ, Shi L, Lee B, Aertgeerts K, Jennings A, Xu R, Kassel DB, Kaldor SW, Navre M, Webb DR, Gwaltney SL (2011) Design and Synthesis of Pyrimidinone and Pyrimidinedione Inhibitors of Dipeptidyl Peptidase IV. J Med Chem 54:510–524

    Article  CAS  Google Scholar 

  41. Marguet D, Bernard AM, Vivier I, Darmoul D, Naquet P, Pierres M (1992) cDNA cloning for mouse thymocyte-activating molecule. A multifunctional ecto-dipeptidyl peptidase IV (CD26) included in a subgroup of serine proteases. J Biol Chem 267:2200–2208

    CAS  Google Scholar 

  42. Lu IL, Tsai KC, Chiang YK, Jiaang WT, Wu SH, Mahindroo N, Chien CH, Lee SJ, Chen X, Chao YS, Wu SY (2008) A three-dimensional pharmacophore model for dipeptidyl peptidase IV inhibitors. Eur J Med Chem 43:1603–1611

    Article  CAS  Google Scholar 

  43. Zeng J, Liu G, Tang Y, Jiang H (2007) 3D-QSAR studies on fluoropyrrolidine amides as dipeptidyl peptidase IV inhibitors by CoMFA and CoMSIA. J Mol Model 13:993–1000

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants 30973642 and 90813005), the Shanghai Committee of Science and Technology (Grant 11DZ2260600), the Fundamental Research Funds for the Central Universities (Grant 0914035), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant 20090074120012), and the Innovation Program of Shanghai Municipal Education Commission (Grant 10ZZ41).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Huang or Guixia Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Lu, W., Lu, C. et al. Identification of diverse dipeptidyl peptidase IV inhibitors via structure-based virtual screening. J Mol Model 18, 4033–4042 (2012). https://doi.org/10.1007/s00894-012-1394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1394-3

Keywords

Navigation