Skip to main content
Log in

Highlighting a π–π interaction: a protein modeling and molecular dynamics simulation study on Anopheles gambiae glutathione S-transferase 1-2

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Cytosolic insect theta class glutathione S-transferases (GSTs) have not been studied completely and their physiological roles are unknown. A detailed understanding of Anopheles gambiae GST (Aggst1-2) requires an accurate structure, which has not yet been determined. A high quality model structure of Aggst1-2 was constructed using homology modeling and the ligand–protein complex was obtained by the docking method. Molecular dynamics (MD) simulations were carried out to study conformational changes and to calculate binding free energy. The results of MD simulation indicate that Aggst1-2 undergoes small conformational changes after ligands dock to the protein, which facilitate the catalytic reaction. An essential hydrogen bond was found between the sulfur atom of glutathione (GSH) and the hydrogen atom of hydroxyl group in Ser9, which was in good agreement with experimental data. A π–π interaction between Phe204 and CDNB ligand was also found. This interaction seems to be important in stabilization of the ligand. Further study of binding free energy decomposition revealed a van der Waals interaction between two ligands that may play a key role in nucleophilic addition reaction. This work will be a good starting point for further determination of the biological role of cytosolic insect theta class GSTs and will aid the design of structure-based inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Reference

  1. Armstrong RN (1991) Glutathione S-transferases: reaction mechanism, structure, and function. Chem Res Toxicol 4(2):131–140

    Article  CAS  Google Scholar 

  2. Ames BN, Profet M, Gold LS (1990) Nature's chemicals and synthetic chemicals: comparative toxicology. Proc Natl Acad Sci USA 87(19):7782–7786

    Article  CAS  Google Scholar 

  3. Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360(Pt 1):1–16

    Article  CAS  Google Scholar 

  4. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    CAS  Google Scholar 

  5. Xiao G, Liu S, Ji X, Johnson WW, Chen J, Parsons JF, Stevens WJ, Gilliland GL, Armstrong RN (1996) First-sphere and second-sphere electrostatic effects in the active site of a class mu glutathione transferase. Biochemistry 35(15):4753–4765

    Article  CAS  Google Scholar 

  6. Ji X, Armstrong RN, Gilliland GL (1993) Snapshots along the reaction coordinate of an SNAr reaction catalyzed by glutathione transferase. Biochemistry 32(48):12949–12954

    Article  CAS  Google Scholar 

  7. Ranson H, Hemingway J (2005) Mosquito glutathione transferases. Methods Enzymol 401:226–241

    CAS  Google Scholar 

  8. Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330(4):891–914

    Article  CAS  Google Scholar 

  9. Hou T, Wang J, Li Y, Wang W (2010) Assessing the performance of the MM/PBSA and MM/GBSA methods. I. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inform Model 51(1):69–82

    Article  Google Scholar 

  10. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. J Comput Chem 32(5):866–877

    Article  CAS  Google Scholar 

  11. Chu W-T, Zhang J-L, Zheng Q-C, Chen L, Xue Q, Zhang H-X (2013) Insights into the drug resistance induced by the BaDHPS mutations: molecular dynamic simulations and MM/GBSA studies. J Biomol Struct Dyn 31:1127–1136

    Google Scholar 

  12. Studio D (2009) version 2.5. Accelrys, San Diego, CA

  13. Case D, Darden T, Cheatham III T, Simmerling C, Wang J, Duke R, Luo R, Walker R, Zhang W, Merz K (2010) AMBER 11. University of California, San Francisco

  14. Yang L, Tan C, Hsieh MJ, Wang J, Duan Y, Cieplak P, Caldwell J, Kollman PA, Luo R (2006) New-generation amber united-atom force field. J Phys Chem B 110(26):13166–13176

    Article  CAS  Google Scholar 

  15. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51(1):69–82. doi:10.1021/ci100275a

    Article  CAS  Google Scholar 

  16. Swanson JM, Henchman RH, McCammon JA (2004) Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys J 86(1):67–74

    Article  CAS  Google Scholar 

  17. USA AISD (2009) Profile-3D user guide.

  18. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystall 26(2):283–291

    Article  CAS  Google Scholar 

  19. Widersten M, Kolm RH, Björnestedt R, Mannervik B (1992) Contribution of five amino acid residues in the glutathione-binding site to the function of human glutathione transferase P1-1. Biochem J 285(Pt 2):377–381

    CAS  Google Scholar 

  20. Casalone E, Allocati N, Ceccarelli I, Masulli M, Rossjohn J, Parker MW, Di Ilio C (1998) Site-directed mutagenesis of the Proteus mirabilis glutathione transferase B1-1 G-site. FEBS Lett 423(2):122–124

    Article  Google Scholar 

  21. Andújar-Sánchez M, Clemente-Jiménez JM, Las Heras-Vázquez FJ, Rodrı́guez-Vico F, Cámara-Artigas A, Jara-Pérez V (2003) Thermodynamics of glutathione binding to the tyrosine 7 to phenylalanine mutant of glutathione S-transferase from Schistosoma japonicum. Int J Biol Macromol 32(3):77–82

    Article  Google Scholar 

  22. Winayanuwattikun P, Ketterman AJ (2004) Catalytic and structural contributions for glutathione-binding residues in a Delta class glutathione S-transferase. Biochem J 382(Pt 2):751–757

    CAS  Google Scholar 

  23. Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, revision A. 1. Gaussian Inc, Wallingford

  24. Wu G, Robertson DH, Brooks CL, Vieth M (2003) Detailed analysis of grid–based molecular docking: a case study of CDOCKER—A CHARMm–based MD docking algorithm. J Comput Chem 24(13):1549–1562

    Article  CAS  Google Scholar 

  25. Schuttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60(8):1355–1363

    Article  Google Scholar 

  26. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  Google Scholar 

  27. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260

    Article  Google Scholar 

  28. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  29. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅ log (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  30. Case D, Darden T, Cheatham Iii T, Simmerling C, Wang J, Duke R, Luo R, Walker R, Zhang W, Merz K (2010) Amber Tools 1.5. Amber

  31. McGaughey GB, Gagné M, Rappé AK (1998) π-Stacking interactions alive and well in proteins. J Biol Chem 273(25):15458–15463

    Article  CAS  Google Scholar 

  32. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  33. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  Google Scholar 

  34. DeLano WL (2002) The PyMOL molecular graphics system. Version 1.1, 2002, Schroinger LLC, 2002, http://www.pymol.org

  35. Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112(16):6127–6129

    Article  CAS  Google Scholar 

  36. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large–scale conformational changes with a modified generalized born model. Proteins: Structure, Function, and Bioinformatics 55(2):383–394

    Article  CAS  Google Scholar 

  37. Board P, Coggan M, Wilce M, Parker MW (1995) Evidence for an essential serine residue in the active site of the Theta class glutathione transferases. Biochem J 311(Pt 1):247–250

    CAS  Google Scholar 

  38. Velazquez F, Peak-Chew SY, Fernández IS, Neumann CS, Kay RR (2011) Identification of a eukaryotic reductive dechlorinase and characterization of its mechanism of action on its natural substrate. Chem Biol 18(10):1252–1260

    Article  CAS  Google Scholar 

  39. Zheng Y-J, Ornstein RL (1997) Mechanism of nucleophilic aromatic substitution of 1-chloro-2, 4-dinitrobenzene by glutathione in the gas phase and in solution. Implications for the mode of action of glutathione S-transferases. J Am Chem Soc 119(4):648–655

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Natural Science Foundation of China (Grant Nos. 21273095, 20903045 and 21203072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Chuan Zheng or Hong-Xing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zheng, QC., Zhang, JL. et al. Highlighting a π–π interaction: a protein modeling and molecular dynamics simulation study on Anopheles gambiae glutathione S-transferase 1-2. J Mol Model 19, 5213–5223 (2013). https://doi.org/10.1007/s00894-013-2009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2009-3

Keywords

Navigation