Skip to main content
Log in

Theoretical design of energetic nitrogen-rich derivatives of 1,7-diamino-1,7-dinitrimino-2,4,6-trinitro-2,4,6-triazaheptane

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The heats of formation (HOFs), energetic properties, and thermal stability of a series of 1,7-diamino-1,7-dinitrimino-2,4,6-trinitro-2,4,6-triazaheptane derivatives with different substituents, different numbers of substituents, and different original chains are found by using the DFT-B3LYP method. The results show that -NO2 or -NH2 is an effective substituent for increasing the gas-phase HOFs of the title compounds, especially -NO2 group. As the numbers of substitutents increase, their HOFs enhance obviously. Increasing the length of original chain is helpful for improving their HOFs. The substitution of -NO2 is useful for enhancing their detonation performances and the effects of the length of original chains on detonation properties are coupled with those of the substituents. An analysis of the BDE of the weakest bonds indicates that the substitution of the -NH2 groups and replacing the -NO2 groups of N-NO2 by the -NH2 groups are favorable for improving their thermal stability, while the substitution of -NO2 and increasing the length of original chain decrease their thermal stability. Considering the detonation performance and thermal stability, seven compounds may be considered as the potential candidates of high energy density compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Annu Rev Mater Res 31:291–321

    Article  CAS  Google Scholar 

  2. Pagoria PF, Lee GS, Mitchell AR, Schmidt (2002) Thermochim Acta 384:187–204

    Article  CAS  Google Scholar 

  3. Göbel M, Klapötke TM (2009) Adv Funct Mater 19:347–367

    Article  Google Scholar 

  4. Bushuyev OS, Brown P, Maiti A, Gee RH, Peterson GR, Weeks BL, Hope-Weeks LJ (2012) J Am Chem Soc 134:1422–1425

    Article  CAS  Google Scholar 

  5. Gutowski KE, Rogers RD, Dixon DA (2006) J Phys Chem A 110:11890–11897

    Article  CAS  Google Scholar 

  6. Wei T, Zhu WH, Zhang JJ, Xiao HM (2010) J Hazard Mater 179:581–590

    Article  CAS  Google Scholar 

  7. Deblitz R, Hrib CG, Plenikowski G, Edelmann FT (2012) Crystals 2:34–42

    Article  CAS  Google Scholar 

  8. Pan Y, Zhu WH, Xiao HM (2012) J Mol Model 18:3125–3138

    Article  CAS  Google Scholar 

  9. Joo YH, Shreeve JM (2010) Angew Chem Int Ed 49:7320–7323

    Article  CAS  Google Scholar 

  10. Joo YH, Shreeve JM (2009) Angew Chem Int Ed 48:564–567

    Article  CAS  Google Scholar 

  11. Wei T, Wu JZ, Zhang CC, Zhu WH, Xiao HM (2012) J Mol Model 18:3467–3479

    Article  CAS  Google Scholar 

  12. Altenburg T, Klapötke TM, Penger A, Stierstorfer J (2010) Z Anorg Allg Chem 636:463–471

    Article  CAS  Google Scholar 

  13. Liu H, Jian Y, Li ZX, Li CS (2012) Thermochim Acta 541:25–30

    Article  CAS  Google Scholar 

  14. Zhang XW, Zhu WH, Xiao HM (2010) Int J Quantum Chem 110:1549–1558

    Article  CAS  Google Scholar 

  15. Ghule VD, Radhakrishnan S, Jadhav PM, Pandey RK (2011) J Mol Model 17:2927–2937

    Article  CAS  Google Scholar 

  16. Thottempudi V, Gao HX, Shreeve JM (2011) J Am Chem Soc 133:6464–6471

    Article  CAS  Google Scholar 

  17. Zhou Y, Long XP, Shu YJ (2010) J Mol Model 16:1021–1027

    Article  CAS  Google Scholar 

  18. Zhu WH, Zhang CC, Wei T, Xiao HM (2011) Struct Chem 22:149–159

    Article  Google Scholar 

  19. Zhu WX, Wong NB, Wang WZ, Zhou G, Tian A (2004) J Phys Chem A 108:97–106

    Article  Google Scholar 

  20. Pan Y, Li JS, Cheng BB, Zhu WH, Xiao HM (2012) Comput Theor Chem 992:110–119

    Article  CAS  Google Scholar 

  21. Ravi P, Gore GM, Tewari SP, Sikder AK (2012) Propell Explos Pyrot 37:52–58

    Article  CAS  Google Scholar 

  22. Fan XW, Ju XH, Xiao HM, Qiu L (2006) J Mol Struct (THEOCHEM) 801:55–62

    Article  CAS  Google Scholar 

  23. Fan XW, Ju XH (2008) J Comput Chem 29:505–513

    Article  CAS  Google Scholar 

  24. Muthurajan H, Sivabalan R, Talawar MB, Anniyappan M, Venugopalan S (2006) J Hazard Mater 133:30–45

    Article  CAS  Google Scholar 

  25. Chen ZX, Xiao JM, Xiao HM, Chiu YN (1999) J Phys Chem A 103:8062–8066

    Article  CAS  Google Scholar 

  26. Xiao HM, Chen ZX (2000) The modern theory for tetrazole chemistry, 1st edn. Science Press, Beijing

    Google Scholar 

  27. Hahre WJ, Radom L, Schleyer PVR, Pole JA (1986) Ab initio molecular orbital theory. Wiley-Interscience, New York

  28. Wei T, Zhang JJ, Zhu WH, Zhang XW, Xiao HM (2010) J Mol Struct (THEOCHEM) 956:55–60

    Article  CAS  Google Scholar 

  29. Atkins PW (1982) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  30. Politzer P, Lane P, Murray JS (2011) Cent Eur J Energ Mater 8:39–52

    CAS  Google Scholar 

  31. Politzer P, Murray JS (2011) Cent Eur J Energ Mater 8:209–220

    CAS  Google Scholar 

  32. Politzer P, Murray JS, Grice ME, DeSalvo M, Miller E (1997) Mol Phys 91:923–928

    CAS  Google Scholar 

  33. Byrd EFC, Rice BM (2006) J Phys Chem A 110:1005–1013

    Article  CAS  Google Scholar 

  34. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  35. Jaidann M, Roy S, Abou-Rachid H, Lussier LS (2010) J Hazard Mater 176:165–173

    Article  CAS  Google Scholar 

  36. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  37. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  38. Benson SW (1976) Thermochemical kinetic, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  39. Mills I, Cvitas T, Homann K, Kallay N, Kuchitsu K (1988) Quantities, units, and symbols in physical chemistry. Blackwell, Oxford

  40. Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255–263

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko, A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09, Revision A. 01. Gaussian Inc, Wallingford, CT

  42. Afeefy HY, Liebman JF, Stein SE “Neutral thermochemical data” in NIST chemistry webbook, NIST standerd reference database number 69. Linstrom PJ, Mallard WG (2000) Eds. Gaitherersburg, MD: National Institute of Standards and Technology, http://webbook.nist.gov

  43. Dean JA (1999) LANGE’S handbook of chemistry, 15th edn. McGraw-Hill, New York

    Google Scholar 

  44. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  45. Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS (2009) J Hazard Mater 161:589–607

    Article  CAS  Google Scholar 

  46. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2011) J Mol Model 17:2569–2574

    Article  Google Scholar 

  47. Murray JS, Concha MC, Politzer P (2009) Mol Phys 107:89–97

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21273115)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Zhu, W. & Xiao, H. Theoretical design of energetic nitrogen-rich derivatives of 1,7-diamino-1,7-dinitrimino-2,4,6-trinitro-2,4,6-triazaheptane. J Mol Model 19, 2945–2954 (2013). https://doi.org/10.1007/s00894-013-1825-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1825-9

Keywords

Navigation